| 研究生: |
何冠廷 Ho, Kuan-Ting |
|---|---|
| 論文名稱: |
鐵矽鉻壓粉磁芯之微觀結構與磁性質關係之研究 Relationship between the microstructure and magnetic properties of Fe-Si-Cr powder cores |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 鐵矽鉻 、氧化層 、初導磁係數 、電感 、軟磁複合材料 |
| 外文關鍵詞: | Fe-Si-Cr alloys powder, soft magnetic material, magnetic property, oxide layer, Y(NO3)3 |
| 相關次數: | 點閱:93 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵矽鉻合金粉末製作之磁性元件由於具有高導磁係數、高飽和磁化量及相當優異之直流疊加特性,因此目前已廣泛應用於大電流功率電感器上。本研究以單軸加壓成型的方式製作鐵矽鉻合金胚體,再以不同熱處理溫度進行退火處理,使鐵矽鉻合金粉末之晶粒外圍形成一氧化層以降低磁損失。但過量的氧化層亦會使磁性質下降,因此期望透過添加不同量的硝酸釔來控制鐵矽鉻合金粉末表面氧化層的形成。
本研究建立成型壓力、硝酸釔添加量、熱處理溫度與胚體密度、應變能、氧化層厚度及電磁性質間之關係。結果顯示隨著成型壓力由500MPa增大至800MPa,相對密度逐漸提高,使得飽和磁化量增高,進而使初導磁係數亦由30提高到40。而經過退火熱處理之後,使得胚體內部之應變能降低,初導磁係數大幅上升。在熱處理溫度方面,隨著溫度的上升,胚體的電阻值也有所提升。胚體的直流疊加特性隨著熱處理溫度上升亦有所提升。添加0.02wt%硝酸釔可改善鐵矽鉻合金粉末磁性元件之品質因子。
The magnetic components made using Fe-Si-Cr alloy have been widely used in high-current power inductors due to its high initial permeability, high saturation magnetization and the excellent DC bias characteristics. In this study, Fe-Si-Cr alloy bodies were prepared by using a uniaxial press molding and then annealed at different heat treatment temperatures to form a chromium-rich oxide layer to reduce the magnetic losses. However, too thick oxide layer formed on the Fe-Si-Cr alloy powder will lead to the degradation of initial permeability. Therefore, adding different amounts of yttrium nitrate into Fe-Si-Cr alloy powder was used to control the oxide layer formation. In this study, the relationships between the molding pressure, the amount of yttrium nitrate addition, heat treatment temperature, density, oxide layer thickness and electromagnetic properties were investigated. The results showed that the relative density gradually increased with increasing molding pressure, which led to the saturation magnetization increased, thereby enabling to improve the initial permeability from 30 to 39. After annealing, the internal strain was reduced, which resulted in the initial permeability increasing substantially. Moreover, the electric resistivity and DC superposition characteristics also increased with increasing heat treatment temperature. The initial permeability can be maintained at about 40, but the magnetic loss can be reduced by adding 0.02wt% yttrium nitrate.
1.湯士源、唐敏注,電源模組用金屬功率電感器技術簡介,工業材料雜誌349期,2016年。
2.柯文淞,晶片電感,晶片型電子陶瓷材料及元件技術,工業技術研究院,1993。
3.呂秉軍,離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響,國立成功大學資源工程學系,碩士論文,2012年。
4.方信喬,添加劑對錳鋅鐵氧磁體低損失最佳化之研究,大同大學材料科學研究所,碩士論文,2006年。
5.粘孝先,軟磁錳鋅鐵氧鐵芯鐵損之分析,國立成功大學電機工程學系,博士論文,2007年。
6.P. Kollár , Z. Birčáková, J. Füzer, R. Bureš, M. Fáberová ,“Power loss separation in Fe-based composite materials,” Journal of Magnetism and Magnetic Materials, 327, 146-150, 2013.
7.謝定洲,粗細鐵粉混合比例對壓粉磁蕊磁性質之影響,國立台灣科技大學材料科技研究所,碩士學位論文,2009年。
8.H. Shokrollahi, K. Janghorban, “Soft magnetic composite materials(SMCs),” Journal of Materials Processing Technology, 189 (1-3), 1-12, 2007.
9.汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,1994年。
10.P. Jansson,交、直流用鐵粉基軟磁材料,粉末冶金工業,2001年。
11.劉穎,軟磁複合材料研究進展,哈爾濱工業大學材料科學與工程學科部,2007年。
12.C. Gélinas, F. Chagnon, S. Pelletier, “Iron-Resin Composites for High Frequency AC Magnetic Applications,” Advances in Powder Metallurgy & Particulate Materials, 37-45, 1997.
13.中野正充,壓粉磁芯,日本專利6-29114,1994年。
14.C. Gélinas. “Soft ferromagnetic powders for AC magnetic applications.” Metal Powder Report, October:44, 200l.
15.M.A. Abshinova, N.E. Kazantseva, P. Sáha, I. Sapurina, J. Kovářová, J. Stejskal, “The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties,” Polymer Degradation and Stability, 93(10), 1826-1831, 2008.
16.J. M. Capus. “PM soft magnets in new applications,” Metal Powder Report, 57, 20-21, 2002.
17.H. Rutz and F. G. Hanejko, “Doubly-coated iron particles,” U.S. patent 5,063,011,1991.
18.S. Rebeyrat, J.L. Grosseau-Poussard, J.F. Dinhut, “Oxidation of phosphated iron powders.” Thin Solid Films, No.379, 39-146, 2002.
19.T.Maeda, H.Toyoda, N.Igarashi, K.Hirose, K.Mimura, T.Nishioka and A.Ikegaya, “Development of Super Low Iron-loss P/M Soft Magnetic Material,” SEI Technical Review, No.60, 3-9, 2005.
20.A. Moorhead, H. Kim, “Composite of coated magnetic alloy particle,” U.S. patent 6,110,420, 2000.
21.K. Anand, B. Kliman, E. Iorio, “Coated ferromagnetic particles and composite magnetic articles thereof,” U.S. patent 6,808,807, 2004.
22.Stela Maria Cristina Fernandes, Lalgudi Venkataraman Ramanathan, “Effect of Surface Deposited Rare Earth Oxide Gel Characteristics on Cyclic Oxidation Behavior of Fe20-Cr Alloys,” Mat. Res., 9, 199-203, 2006.
23.小川秀樹,棚田淳,松浦准,田中喜佳,岸弘志,河野健二,專利,CN 102893346 A,2011年。
24.Nima Shaigan, Wei Qu, Douglas G. Ivey, Weixing Chen, “A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects.”J. Power Sources, 195, 1529-1542, 2010.
25.S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, M. Sennour, “Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys,” J. Power Sources, 171, 652-662, 2007.
26.Srinivasan Swaminathan, Michel Spiegel, “Effect of alloy composition on the selectiveoxidation of ternary Fe–Si–Cr, Fe–Mn–Crmodel alloys.” Surf. Interface Anal., 40, 268-272, 2008.
27.田民波,材料學概論,台灣五南圖書出版股份有限公司,2015年。
28.S. Vives, E. Gaffet , C. Meunier, X-ray diffraction line profile analysis of iron ball milled powders, Materials Science and Engineering: A, 366, 2004.
29.鄭明得,薄型大電流電感器鐵芯粉末調配之穩健最佳化設計,中國機械工程學會第二十六屆全國學術研討會論文集,2009年。