簡易檢索 / 詳目顯示

研究生: 邱德任
Chiu, Te-Jen
論文名稱: 微小物件推移之姿態調整與定位
Orientating and Positioning of Small Objects under Pushing Manipulation
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 113
中文關鍵詞: 影像伺服姿態調整定位推移
外文關鍵詞: visual servo, orientation, positioning, pushing
相關次數: 點閱:150下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以本實驗室現有之微組裝系統作為出發點,應用摩擦理論於微小物件之模型建立與控制實現,建立影像伺服微小物件推移之姿態調整與定位系統。首先以摩擦力造成能量損失的最小值作為線性規劃的目標,求解微小物件與工作表面間的摩擦力分佈參數。接著針對特徵長度介於1~2 mm之長方形、圓柱形和圓球形微小物件,分別以摩擦理論分析其接觸模式並以實驗結果加以驗證。最後根據摩擦理論訂定推移策略,搭配以經驗法則設定之回授增益,推移0.868 x 0.495 x 0.330 mm3之長方形物件至設定位置,完成微小物件推移之姿態調整與定位。

    Based on the development of micro-assembly system in OME lab, the thesis applies friction theory in modeling and control of pushing small objects, and constructs a vision-servo orientation and positioning system for pushing manipulation. Maximum frictional energy loss is employed as objective in linear programming problem for solving friction distribution parameters between the object and contact platform. The contact modes are analyzed and verified by experimental tests utilizing rectangular, cylindrical and spherical objects with characteristic length between 1~2 mm. Based on the friction theory and experimental results, a control strategy for vision-servo pushing is implemented. The visual servo is successful to achieve orientation and positioning of pushing rectangular object with size 0.868 x 0.495 x 0.330 mm3.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號表 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3.1 非夾取式操縱 2 1-3.2 大尺度之推移操縱 4 1-3.3 中小尺度之推移操縱 8 1-3.4 文獻回顧總結 12 1-4 研究目標與方法 14 1-4.1 研究目標 14 1-4.2 研究方法 14 1-5 本文架構 16 第二章 基礎理論 17 2-1 基礎摩擦理論 17 2-1.1 庫倫摩擦定律 17 2-1.2 摩擦力模型 19 2-1.3 摩擦圓錐與摩擦角 20 2-2 平面運動分析 21 2-2.1 平移 22 2-2.2 旋轉 23 2-3 瞬心位置與接觸模式 24 2-4 旋轉方向 25 第三章 微操縱系統與影像系統 29 3-1 微操縱系統 29 3-1.1 載具平台 29 3-1.2 操縱器 29 3-1.3 微小物件 32 3-2 影像系統 35 3-2.1 影像量測設備 35 3-2.2 位置與姿態估測 36 3-3 系統校準 39 3-3.1 置物平台校準 39 3-3.2 影像校準 39 第四章 摩擦力分佈參數估測 41 4-1 參數定義 41 4-2 拘束條件 42 4-2.1 接觸類型與拘束條件 42 4-2.2 接觸模式與拘束條件 43 4-3 線性規劃 43 4-3.1 問題定義 44 4-3.2 線性規劃的特性與解法 45 4-4 參數估測 53 4-4.1 集總點配置 55 4-4.2 線性規劃的實現 56 第五章 建模與驗證 59 5-1 假設條件與參數定義 59 5-2 接觸條件 61 5-2.1 平衡條件 61 5-2.2 接觸模式 61 5-3 速度分析 64 5-3.1 stick模式 64 5-3.2 slip模式 65 5-4 摩擦力分析 66 5-5 壓力分佈 68 5-5.1 外力與壓力分佈 68 5-5.2 集總模型 70 5-6 受力與加速度分析 71 5-7 模擬與驗證 74 5-7.1 長方形與圓柱形物件推移驗證 74 5-7.2 圓球形物件推移驗證 79 第六章 控制與應用 83 6-1 穩定推移 83 6-2 推移控制系統 83 6-2.1 可控性定義 84 6-2.2 接觸類型與可控性 85 6-3 實驗設計 87 6-4 系統整合與實驗結果 94 6-4.1 系統整合 94 6-4.2 實驗結果 94 第七章 結論與未來展望 102 7-1 結論 102 7-2 未來展望 103 參考文獻 104 附錄A 108 A-1 材料摩擦係數表一 108 A-2 材料摩擦係數表二 109 附錄B 110 B-1 載具平台規格 110 B-2 CCD Camera規格 111 B-3 顯微鏡規格 112 自述 113

    [1] M. T. Mason, "Mechanics and Planning of Manipulator Pushing Operations," International Journal of Robotics Research, vol. 5, no. 3, pp. 53-71, 1986.
    [2] N. Sawasaki and H. Inaba, "Tumbling Objects Using a Multi-fingered Robot," Journal of Robotics Society of Japan, vol. 9, no. 5, pp. 20-31, 1991.
    [3] Y. Aiyama, M. Inaba, H. Inoue, "Pivoting: A New Method of Graspless Manipulation of Object by Robot Fingers," Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 136-143, 1993.
    [4] K. M. Lynch, "The Mechanics of Fine Manipulation by Pushing," Proceeding of IEEE International Conference on Robotics and Automation, pp. 2269-2276, 1992.
    [5] K. M. Lynch, H. Maekawa, K. Tanie, "Manipulation and Active Sensing by Pushing Using Tactile Feedback," Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 416-421, 1992.
    [6] F. Gandolfo, M. Tistarelli, G. Sandini, "Visual Monitoring of Robot Actions," Proceeding of IEEE/RSJ International Conference Intelligent Robots and Systems, pp. 269-275, 1991.
    [7] Y. Okawa and K. Yokoyama, "Control of a Mobile Robot for the Push-a-Box Operation," Proceeding of IEEE International Conference on Robotics and Automation, pp. 761-766, 1992.
    [8] M. Salganicoff, G. Metta, A. Oddera, G. Sandini, "A Direct Approach to Vision Guided Manipulation," Proceeding of International Conference Advanced Robotics, pp. 133-140, 1993.
    [9] M. Salganicoff, G. Metta, A. Oddera, G. Sandini, "A Vision-Based Learning Method for Pushing Manipulation," AAAI Fall Symp. on Machine Learning in Computer Vision, 1993.
    [10] S. Akella and M. T. Mason, "Posing Polygonal Objects in the Plane by Pushing," Proceeding of IEEE International Conference on Robotics and Automation, pp. 2255-2262, 1992.
    [11] A. Ferreira, C. Cassier, S. Hirai, "Automatic Microassembly System Assisted by Vision Servoing and Virtual Reality," IEEE/ASME Transactions on Mechatronics, vol. 9, no. 2, pp. 321-333, 2004.
    [12] M. Sitti, "Atomic Force Microscope Probe based Controlled Pushing for Nano-Tribological Characterization," IEEE/ASME Transactions on Mechatronics, vol. 8, no. 3, 2003.
    [13] N. A. Lynch, C. D. Onal, E. Schuster, M. Sitti, "Vision-Based Feedback Strategy for Controlled Pushing of Microparticles," Journal of Micro/Nano-Mechatronics, vol. 4, pp. 73-83, 2008.
    [14] M. Shahini, W. Melek, J. T. W. Yeow, "Characterization of Micro Forces in Pushing Flat Micro-Sized Objects," IEEE Conference on Automation Science and Engineering, pp. 539 - 544, 2010.
    [15] A. Sudsang, F. Rothganger, J. Ponce, "Motion Planning for Disc-Shaped Robots Pushing a Polygonal Object in the Plane," IEEE Transactions on Robotics and Automation, vol. 18, pp. 550-562, 2002.
    [16] D. Nieuwenhuisen, A. F. van der Stappen, M.H. Overmars, "Pushing a Disk Using Compliance," IEEE Transactions on Robotics, vol. 23, no. 3, 2007.
    [17] C. D. Onal and M. Sitti, "Visual Servoing-Based Autonomous 2-D Manipulation of Microparticles Using a Nanoprobe," IEEE Transactions on Control Systems Technology, vol. 15, no. 5, 2007.
    [18] H. Moseley, "On the Equilibrium of the Arch," Transactions of the Cambridge Philosophical Society, vol. 5, pp. 293-313, 1835.
    [19] M. T. Mason and J. K. Salisbury, "Robot Hands and the Mechanics of Manipulation," The MIT Press, 1985.
    [20] F. Reuleaux, "The Kinematics of Machinery," reprinted by Dover, New York, 1963.
    [21] 張仁宗、邱德任,「圓柱形物件推移之姿態調整與定位」,國立成功大學機械工程學系,中華民國一百零一年一月。
    [22] K. M. Lynch, "Estimating the Friction Parameters of Pushed Objects," Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 186-193, 1993.
    [23] V. Klee and G. J. Minty, "How Good is the Simplex Algorithm," O. Shisha, editor, Inequalities, III, Academic Press, New York, pp. 159-175, 1972.
    [24] M. A. Peshkin and A. C. Sanderson, "The Motion of a Pushed, Sliding Workpiece," IEEE Journal of Robotics and Automation, vol. 4, pp. 569-598, 1988.
    [25] J. Barber, R. A. Volz, R. Dessai, R. Rubinfeld, B. Schipper, J. Wolter, "Automatic two-fingered grip selection," IEEE International Conference on Robotics and Automation, pp. 890-896, 1986.
    [26] 林敬祐,「影像伺服微物件姿態調整與定位組裝系統之發展」,國立成功大學機械工程學系碩士論文,中華民國九十八年六月。
    [27] K. M. Lynch and M. T. Mason, "Stable Pushing: Mechanics, Controllability, and Planning," International Journal of Robotics Research, vol. 15, no. 6, pp. 533-556, 1996.

    下載圖示
    2017-02-15公開
    QR CODE