簡易檢索 / 詳目顯示

研究生: 蘇庭毅
Su, Ting-Yi
論文名稱: 以現場可程式化閘陣列實現追蹤移動目標之快速影像處理
Using FPGA to realize rapid image-processing for a moving-object tracking
指導教授: 田思齊
Tien, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 56
中文關鍵詞: FPGA影像伺服控制動態追蹤HSV色彩空間轉換形態學法微分估測器
外文關鍵詞: FPGA, Visual Servo Control, Dynamic Tracking, HSV Space Transform, Morphology
相關次數: 點閱:100下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以追蹤乒乓球為例,建立一個影像動態追蹤的影像伺服控制系統。此系統可偵測移動目標物的形心位置,並將形心位置傳送至運動控制卡進行目標追蹤。影像處理方面,我們利用FPGA實行HSV色彩空間轉換來凸顯目標物顏色特徵,再使用形態學法將多餘雜訊濾除。得到的結果再使用權重法取得目標物的形心位置。此外,為存取影像處理結果,本系統設計影像選取器和影像整合器將影像存取出。控制方法方面,利用微分估測器估測目標物的速度與加速度。並以此為依據估測目標物下一時刻的位置以便提前追蹤。如此可降低追蹤誤差,達到更好的追蹤效果。整體處理程序包含影像處理、訊號傳遞、旋轉平台位置控制,可在攝影機影像更新頻率(60 fps)內完成。實驗結果顯示,硬體影像處理比軟體影像處理的效果好。移動目標物(乒乓球)可持續被追蹤並保持在影像垂直中心附近。

    In this study, a rapid image-processing for a moving-object tracking system based on visual servo control is established and verified with a table-tennis-ball-tracking example. The system can detect the centroid of a moving object and moving object is tracked by transferring centroid to motion controller to complete the tracking task. For image processing, field-programmable-gate-array (FPGA) is utilized. At first, the color characteristic of the moving object can be highlighted via using hue-saturation-value (HSV) space transform and morphology to filters out excess noise. After that, centroid of the moving object is calculated by using weight method. Besides, image selector and image integrator are designed to store the result of image processing. As for control, the velocity and acceleration of moving object are calculated by differential estimator to estimate its next position for tracking it in advance. By this way, the tracking error can be reduced to achieve better tracking result. It is noted that, the whole process including image processing, signal transmission and rotational platform control can be finished within the camera's frame rate (i.e., 60 fps). Experimental results show that, image processing is more effective by using hardware than using software , and the moving object (a table tennis ball) can be tracked and maintained close to the vertical center of the image.

    圖目錄.............iii 表目錄.............v 符號表.............vi 第一章緒論.............1 第二章影像偵測及處理...........4 2.1 目標辨識............6 2.1.1 HSV色彩空間轉換.........6 2.1.2 形態學法(Morphology) .......10 2.2 形心判定............14 2.3 影像存取............16 2.3.1 影像選取器(Image Selector) ......16 2.3.2 影像整合器(Image Integrator) .......17 第三章系統架構及軟硬體實現.........19 3.1 影像偵測追蹤系統.........19 3.2 影像伺服控制..........28 3.2.1 控制器設計.........29 3.2.2 影像處理之系統架構........38 第四章實驗與討論...........41 4.1 影像追蹤實驗..........44 4.1.1 目標辨識..........44 4.1.2 目標形心判定..........45 4.2 控制追蹤實驗..........46 4.3 討論.............49 第五章結論與未來展望...........52 5.1 結論.............52 5.2 未來展望............53 Bibliography .............54

    [1] Chengtian Song, Keyong Wang, and Lian Zheng. An image processing system
    research on target and rendezvous status identi cation of missile and plane.
    2008 Congress on Image and Signal Processing, 4:525 { 527, 2008.
    [2] Ping-Min Hsu and Zhen-Wei Zhu. Car trajectory prediction in image proces-
    sing and control manners. 2016 IEEE International Conference on Intelligent
    Transportation Engineering (ICITE), pages 45 { 49, 2016.
    [3] Nan Zhang, Yun shan Chen, and Jian li Wang. Image parallel processing
    based on gpu. 2010 2nd International Conference on Advanced Computer
    Control, 3:367 { 370, 2010.
    [4] Al ecio Pedro Delazari Binotto, Dionisio Doering, Thorsten Stetzelberger, Pa-
    trick McVittie, Sergio Zimmermann, and Carlos Eduardo Pereira. A cpu,
    gpu, fpga system for x-ray image processing using high-speed scienti c came-
    ras. 2013 25th International Symposium on Computer Architecture and High
    Performance Computing, pages 113 { 119, 2013.
    [5] Yun-Won Choi, Yun-Su Chung, Soo-In Lee, and Suk-Gyu Lee. Rear object
    detection method based on optical
    ow and vehicle information for moving
    vehicle. 2017 Ninth International Conference on Ubiquitous and Future Net-
    works (ICUFN), pages 203 { 205, 2017.
    [6] Wanli Chen, Ya Jun Yu, and Hongjian Shi. An improvement of edge-adaptive
    image scaling algorithm based on sobel operator. 2017 4th International Con-
    ference on Information Science and Control Engineering (ICISCE), pages 183
    { 186, 2017.
    [7] Hu Jiang-Hua, Qin Lei, and Fu Tian-Qi. Image processing based on mathe-
    matical morphology in camou
    age. 2013 Seventh International Conference
    on Image and Graphics, pages 269 { 272, 2013.
    [8] Baoshan Zhang, Shoufeng Tang, Manman Jin, Chaoliang Xu, and Minming
    Tong. Research on mine robot positioning based on weighted centroid method.
    2018 International Conference on Robots & Intelligent System (ICRIS), pages
    17 { 20, 2018.
    [9] P.M. Sharkey and D.W. Murray. Delay versus performance of visually gui-
    ded systems. In IEE Proceedings-Control Theory Application, pages 436{447,
    1996.
    [10] G.V. McMurray J.A. Piepmeier and H. Lipkin. Tracking a moving target with
    model independent visual servoing: a predictive estimation approach. In Pro-
    ceedings. 1998 IEEE International Conference on Robotics and Automation,
    pages 2652{2657. IEEE, 1998.
    [11] H. Araujo J. P. Barreto, J. Batista. Solution for visual control of motion:
    Active tracking applications. In Proceedings of the 8th IEEE Mediterranean
    Conference on Control and Automation, 2000.
    [12] J.L Lai. A study on visual detection and tracking of moving targets. Master's
    thesis, National Cheng Kung University, 2013.
    [13] E. Brookner. Tracking and Kalman Filtering Made Easy. New York:John
    Wiley and Sons, 1998.
    [14] Yuan-Pao Hsu, Hsiao-Chun Miao, and Ching-Chih Tsai. Fpga implemen-
    tation of a real-time image tracking system. Proceedings of SICE Annual
    Conference 2010, pages 2878 { 2884, 2010.
    [15] M. C Hanumantharaju, M. Ravishankar, D. R Rameshbabu, and S. Rama-
    chandran. A novel fpga implementation of adaptive color image enhancement
    based on hsv color space. International Conference on Electronics Computer
    Technology, 2:160 { 163, 2011.
    [16] Masahiro Shimasaki and Yukinobu Hoshino. Pipeline labeling algorithm with
    parallel calculation of gravity center on fpga. International Conference on Soft
    Computing and Intelligent Systems (SCIS) and 17th International Symposium
    on Advanced Intelligent Systems (ISIS), pages 86 { 91, 2016.
    [17] Ko Appiah, Andrew Hunter, Patrick Dickinson, and Jonathan Owens. A
    run-length based connected component algorithm for fpga implementation.
    2008 International Conference on Field-Programmable Technology, pages 177
    { 184, 2008.
    [18] J.G. ZIEGLER and N.B. NICHOLS. Optimum settings for automatic con-
    trollers. ASME Transactions, pages 759{768, 1942.
    [19] A.S. McCormack and K.R. Godfrey. Rule-based autotuning based on fre-
    quency domain identi cation. IEEE Transactions on Control Systems Techno-
    logy, 6:43 { 61, 1998.
    [20] S.C. Schneider R.H. Brown and M.G. Mulligan. Analysis of algorithms for
    velocity estimation from discrete position versus time data. IEEE Transacti-
    ons on Industrial Electronics, 39(1):11{19, 1992.
    [21] X.W. Lin. Model-fusion-based precision motion control of linear motors. Mas-
    ter's thesis, National Cheng Kung University, 2013.

    下載圖示 校內:2020-07-26公開
    校外:2020-07-26公開
    QR CODE