簡易檢索 / 詳目顯示

研究生: 黃契彰
Huang, Chi-jang
論文名稱: 以熵觀點來討論室溫熔鹽BMIPF6的低熔點
An Entropy View of the Low Melting Point of RTIL BMIPF6
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 離子液體擴散係數化學位移
外文關鍵詞: diffusion coefficient, chemical shift, ionic liquid
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用PFSE-NMR(pulsed-field-gradient spin-echo NMR)擴散(D)實驗最近被使用來探討離子液體(ILs)的物理性質,結合電化學數據, Watanabe和他的研究團隊介紹了”ionicity”和證實自解離BMIPF6(約80%)在propylene carbonate (PC)進行離子結合。此外,FAB-MS光譜顯露BMI-PF6比較喜歡以帶負電荷型式存在,而不喜歡以帶正電荷方式存在。根據想要瞭解增加影響共溶劑(co-solvents)在離子液體中物理性質的目標,Pregosin研究團隊利用PGSE-NMR 數據和 1H,19F-HOESY 光譜發現了“陰離子橫跨imidazolium平面“且“陰離子漂浮在陽離子附近“的模型。且他們發表另一個陳述“一個陽離子周圍圍繞超過一個陰離子“。這與我們最近提議用超陰離子(hyper anion preference (HAP))來解釋BMIPF6的許多物理性質:(1)陰離子擴散比陽離子擴散對溫度有更高敏感度 (2) cationic transference數目會隨溫度而變 (3) 低的陰離子donicity和高ionicity (4) 高黏度。
    在之前的研究我們已經發現1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6) 在2,2,2-trifluoroethane (TFE)中可以增進溶解度,與乙醇比較起來,TFE上的CF3可與陽離子BMI+ interact。這表示“ 陽離子與陰離子擴散的比“ 下降,可以經 1H,19F-HOESY光譜證實。我們已經指出原本PF6–會圍繞在BMI+上的丁基,但當莫爾分率增加為19:1 (TFE:BMI-PF6)時,TFE上的CF3取代原本圍繞在BMI+上丁基的PF6–而增進溶解度。換句話說,原本在BMI+上丁基的PF6–因CF3取代而更靠近BMI+的環上;這個描述當加入更多的TFE時會更接近“astriding model“。

    這個研究第一個目的為利用1H,19F-HOESY光譜研究陰離子PF6–漂浮在丁基上BMI-PF6的物理性質。第二個目的為檢查“陽離子與陰離子擴散的比“。BMI+ (D +), PF6– (D –) and TFE (D TFE)在混合物I 到VIII(BMI-PF6/TFE,χTFE=0.25、0.35、0.4、0.45、0.5、0.55、0.65、0.8)的擴散速率利用PGSE-NMR實驗改變莫耳分率(TFE/BMI-PF6)由1:3到4:1來檢查TFE上的CF3對溶解度的改變。用1H,19F-HOESY 光譜和自旋-晶格弛緩 (spin-lattice relaxation times (1H 和 19F))補充不足資訊。

    The pulsed-field-gradient spin-echo (PFSE) NMR diffusion (D) experiments have recently been employed to study factors affecting physical properties in ionic liquids (ILs). Combining with electrochemical data, Watanabe and coworkers have introduced the term “ionicity“ and confirmed that the self-dissociatable (near 80%) BMIPF6 proceeds ionic association in the presence of propylene carbonate (PC) cosolvent. Besides, the FAB-MS spectra reported for BMIPF6 reveal that the charged clusters prefer existing in anions to existing in cations. With the aim to understand how physical properties of ILs are affected by adding cosolvents, on the other hand, Pregosin et al. have proposed the models of “anions astriding imidazolium plane“ and/or “anions floating around the cation“ based on PGSE-NMR data and 1H,19F-HOESY spectra. They have also presented the statement,“an individual cation is surrounded by more than one anion.“ We have recently proposed that this hyper anion preference (HAP) approach might be employed to account for numerous physical properties published for BMIPF6, including (1) higher sensitive of anionic diffusivity towards temperatures than cationic diffusivity, (2) temperature-dependent cationic transference number, (3) low anionic donicity and high ionicity and (4) high viscosity.
    In a previous study we ascribed the improved miscibility of 1-butyl-3-methylimidazolium hexafluoro-phosphate (BMIPF6) and 2,2,2-trifluoroethane (TFE), compared with that of BMIPF6 and ethane, to the CF3 group since it can interact with BMI+ cations. This is shown by reduced “ratios of cation to anion diffusivities” via PGSE-NMR experiments and further confirmed by 1H,19F-HOESY spectra. We have pointed out that the originally PF6–-surrounded butyl groups of BMI+ cations are seen by the CF3 groups of TFE in the mixture at moar ratio 19:1 (TFE:BMIPF6). In other words PF6– anions are localized near the BMI+ ring system, a description closer to the astriding model as more TFE are added. The first purpose of this work is to investigate the effects of floating of PF6– anions around the butyl on physical properties of BMIPF6 focused on 1H,19F-HOESY spectra acquired for IL/cosolvent systemes.
    The second goal in this work is to examine the validity of the approach of “ratios of cationic to anionic diffusivities” proposed earlier in the other work.3a Diffusion coefficients of BMI+ (D+), PF6– (D–) and TFE (DTFE) in mixtures I to VIII, with TFE/BMIPF6 molar ratios increasing from 1:3 to 4:1, measured by PGSE-NMR experiments have been analyzed to examine the function of the CF3 group in assisting the miscibility. 1H,19F-HOESY spectra and spin-lattice relaxation times (1H and 19F) have also been investigated to get supplementary and/or complementary information.

    目 錄 中文摘摘…………………………………………………………Ι 英文摘要……………………………………………………… III 致謝…………………………………………………………………V 目 錄…………………………………………………………VI 表目錄…………………………………………………………VIII 圖目錄………………………………………………………… IX 第一章 序論……………………………………………………1 第二章 理論背景………………………………………………7 2-1 離子液體……………………………………………………7 2-1-1 離子液體的簡介…………………………………………7 2-1-2 離子液體的定義…………………………………………10 2-1-3 離子液體的性質…………………………………………13 2-2 核磁共振……………………………………………………18 2-2-1 核磁共振的歷史背景……………………………………18 2-2-2 核磁共振的基本原理……………………………………21 2-2-3 吸收機制…………………………………………………25 2-2-4 遮蔽與化學位移…………………………………………26 2-2-5 核磁共振的遲緩機制……………………………………27 2-2-6 擴散係數…………………………………………………30 第三章 實驗過程……………………………………………33 3-1 藥品………………………………………………………………33 3-2 離子液體的合成方法…………………………………………33 3-2-1 BMI-Cl 的製備………………………………………33 3-2-2 BMI-PF6 的合成方法………………………………34 3-3 藥品配置………………………………………………………35 3-4 實驗裝置與儀器………………………………………………36 3-5 實驗原理與方法………………………………………………36 3-5-1 擴散係數的測量方法………………………………36 3-5-2 遲緩時間的測量……………………………………38 3-5-3 黏度與密度以及導電度的測量方法………………40 第四章 結果與討論………………………………………………44 4-1加入三氟乙醇使BMI-PF6陰、陽離子間引力庫倫引力變弱 ……………………………………………………………………44 4-2三氟乙醇與BMI-PF6間的作用…………………………………46 4-3固化與熵的變化 …………………………………………………48 4-4 溶解度與丁基……………………………………………………50 4-5 不同的陰離子與丁基……………………………………………51 4-6 用苯與氟苯作研究………………………………………………52 第五章 結論 ……………………………………………………55 參考文獻………………………………………………………………69 表目錄 表 1:各種氯化物的熔點…………………………………………13 表 2:改變陰離子大小時的熔點變化情形……………………14 表3:BMI+、PF6–、和TFE 在BMI-PF6/TFE 系統改變莫耳分率與溫度的擴散速率 (10-11m2s-1)…60 圖目錄 圖 1:常見有機陽離子的結構圖 …………………………………11 圖 2:利用不同的陰陽離子所設計的離子液體 …………………12 圖 3:含有 1-alkyl-3-methylimidazolium 的離子液體的熱裂解溫度 ……15 圖 4:在固定溫度為 60℃ 及 x(AlCl3)=0.5 條件下,改變imidazolium cation 上取代基的不同時,觀察出其密度(ρ)的變化情形 …………16 圖 5:在相同的 1-ethyl-3-methylimidazolium cation下,改變不同陰離子時,觀察其密度 ( ρ ) 的變化狀況…………………… 16 圖 6 : Larmor equation ω=γ(B0-σ)右手定則 ……………19 圖 7: 原子核在一外加磁場下所產生的矩………………………22 圖 8:在 I = 1/2 的原子核在外加磁場 Bo 的能階分佈圖 ……24 圖 9:在外加磁場中,其能階差的關係圖…………………………24 圖10:簡易加熱迴流裝置圖 ………………………………………34 圖11:此為Pulsed Field Gradient Spin-Echo method中所使用的脈衝回聲序列…………………………………………………………37 圖12:用向量的方式表示 spin-echo 的實驗過程 ……………… 38 圖13:在 inversion recovery 的實驗方法中所用的脈衝序列…39 圖14:以向量的方式來表示測量 T1 的實驗過程…………………39 圖15: BMI-PF6的示意圖………………………………………… 56 圖16: 1H、19F在各種不同濃度(BMI-PF6/TFE)的化學位移………51 圖17a:1H、19F-HOESY 光譜 BMI-PF6/TFEχTFE = 0.10…………53 圖17b:1H、19F-HOESY 光譜 BMI-PF6/fluorobenzene…………54 圖17c:1H、19F-HOESY 光譜 BMI-PF6/TFEχTFE = 0.95…………55 圖15a:BMI-PF6/TFE示意圖………………………………………56 圖15b:BMI-PF6/TFE示意圖……………………………………56 圖16: BMI-PF6上氫原子位置標示圖………………………………57 圖17a:H2化學位移在不同濃度(BMI-PF6/TFE)的變化…………57 圖17b:H4/H5化學位移在不同濃度(BMI-PF6/TFE)的變化………58 圖17c:19F化學位移(PF6–)在各種不同濃度(BMI-PF6/TFE)……58 圖17d:19F化學位移(CF3)在各種不同濃度(BMI-PF6/TFE)………59 圖18a: 1H、19F-HOESY 光譜 BMI-PF6/TFE χTFE = 0.10………61 圖18b: 1H,19F-HOESY 光譜 BMI-PF6/TFE χTFE = 0.95………62 圖19: BMI-BF4的astride model示意圖…………………………63 圖20:EMI-PF6氟化成(F)EMI-PF6……………………………………63 圖21:BMI-PF6/fluorobenzene示意圖………………………………64 圖22:NOESY 光譜BMI-PF6/fluorobenzene…………………………65 圖23a:1H、19F-HOESY 光譜BMI-PF6/benzene…………………66 圖23b:1H、19F-HOESY 光譜MI-PF6/fluorobenzene……………67 圖24a:BMI-PF6/fluorobenzene、benzene(χ=0.05) BMI+的擴散速率(m2s-1)…68 圖24b:BMI-PF6/fluorobenzene、benzene(χ=0.05) PF6-的擴散速率(m2s-1) …68

    參考文獻

    1.(a) A. Noda, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B 2001, 105,4603-4610.
    (b) H. Tokuda, K. Hayamizu, K. Ishii, Md. A. B. H. Susan, and M. Watanabe, J. Phys. Chem. B 2004, 108, 16593-16600.
    (c) H. Tokuda, K. Hayamizu, K. Ishii, Md. A. B. H. Susan, and M. Watanabe, J. Phys. Chem. B 2005, 109, 6103-6110.
    (d) H. Tokuda, K. Ishii, Md. A. B. H. Susan, S. Tsuzuki, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B 2006, 110, 2833-2839.
    (e) H. Tokuda, S.-J. Baek, and M. Watanabe, Electrochemistry 2005, 73, 620-622.
    2.(a) T. Umecky, M. Kanakubo, and Y. Ikushima, Fluid Phase Equilibria 2005, 228-229, 329-333.
    (b) T. Umecky, M. Kanakubo, and Y. Ikushima, J. Mol. liquids 2005, 119, 77-81.
    3.(a) K. Hayamizu, Y. Aihara, S. Arai, and C. G. Martinez, J. Phys. Chem. B 1999, 103, 519-524.
    (b) K. Hayamizu, Y. Aihara, H. Nakagawa, T. Nukuda, and W. S. Price, J. Phys. Chem. B 2004, 108, 19527-19532.
    4.P. Stilbs, Prog. NMR Spectrosc., 1987, 19, 1-45.
    5.Devendrababu Nama a, P.G. Anil Kumar a, Paul S. Pregosin a, Inorganica Chimica Acta 2006, 359,1907–1911
    6.P. Wassercheid, T. Welton, Editor “ Ionic Liquids in Synthesis”, 2002, Wiley- VCH Verlag GmbH & Co. KGaA.
    7.I. N.Levine, Physical Chemistry, McGraw- Hill, New York, 1978, Chap. 16.
    8.P. Walden, Bull. Acad. Imper. Sci, 1914, 1800.
    9.F. H. Hurley, T. P. Wier, J. Electrochem. Soc., 1951, 98, 203-206.
    10.F. H. Hurley, T. P. Wier, Jr., J. Electrochem. Soc., 1951, 98, 207-212.
    11.J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg. Chem., 1982, 21, 1263-1264.
    12.Freemantle M. Chem. Eng. News March 30, 1998, 32.
    13.E. I. Cooper, O’Sullivan, E. J. M., “Proceedings of the eighth International Symposium of Molten Salts”, The Electro- chemical Society: Pennington, NJ, 1992, Proceeding Vol. 92-12, pp 384-396.
    14.J. S. Wilkes, M. J. Zaworodtko, J. Chem. Soc., Chem. Commun., 1992, 13, 965-967.
    15.P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. De Souza, J. Dupont, Polyhedron, 1996, 15, 1217
    16.J. S. Wilkes, Green Chem., 2002, 4, 73
    17.R. Hagiwara, Y. Ito, J. Fluorine Chem., 2000, 105, 221-227.
    18.Peter wasserscheid, Wilhelm Keim, Angew. Chem. Int. Ed., 2000, 39, 3772-3789.
    19.J. S. Wilkes, J. A. Levisky, R. A. Wilson, C.L. Hussey, Inorg. Chem., 1982, 21, 1263-1264.
    20.W.T. Ford, R. J. Hart, J. Org. Chem., 1973, 38, 3916-3918.
    21.K. R. Seddon, Kinet. Catal. Engl. Transl., 1996, 37, 693-697.
    22.P. Bonhôte, A. –P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 1996, 35, 1168-1178.
    23.A. Elaiwi, P. B. Hitchcock, K.R. Seddon, N. Srinivasan, Y. –M. Tan, T. Welton, J.A. Zora, J. Chem. Soc. Dalton Trans., 1995, 3467-3472.
    24.M. L. Mutch, J. S. Wilkes, Proc. Electrchem.Soc., 1998, 98, 254-260.
    25.P. Bonhôte, A. –P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 1996, 35, 1168-1178
    26.A. A. Fannin, Jr., D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, J. L. Williams, J.Phys. Chem., 1984, 88, 2614-2612
    27.J. R. Sanders, E. H. Ward, C. L. Hussey, J. Electrochem. Soc., 1986, 133, 325-330.
    28.K. R. Seddon, A. Stark, M.-J. Torres, Pure Appl. Chem., 2000, 72, 2275.
    29.J. Dufourcq, J. F.Faucon, E. Breard, M. Pezolet, M. Tessier, P. E. Bougis, J. Van Rietschotenm, P. Delori, H. Rochat, Toxicon. 1982, 20, 165.
    30.F. Block, W. W. Hansen, W. Packard, Phys. Rev. 1946, 69, 127
    31.E. M. Purcell, H. C. Torrey, R. V. Pound, Phys. Rev. 1946, 69, 37
    32.楊淑岐,余靖譯 科儀新知 1999, 6, 32
    33.甘魯生 電子月刊 1998, 36, 55.
    34.J. T. Arnold, S. S. Dharmatti, M. E. Packard, J. Chem. Phy. 1951, 19, 507.
    35.黃紹光 諾貝爾的榮耀-化學桂冠,1999,天下遠見.
    36.D. Yang, R. Konrat, L. E. Kay, J. Am. Chem. Soc., 1997, 119, 11938.
    37.D. Yang, L. E. Kay, J. Am. Chem. Soc., 1999, 121, 2571.
    38.K. J. klabunde and D. J. Burton; J.Am. Chem. Soc., 1972, 94, 5985.
    39.H. J. V. Tyrrell, K.R. Harris, Diffusion in Liquids, Butterworths, London, 1984.
    40.E. L. Cluster, Diffusion-Mass Transfer in Fluid Systems, Cambridge Univeristy Press, Cambridge, 1984.
    41.W. S. Price, Concepts Magn. Reson., 1997, 9, 299.
    42.W. S. Price, Concepts Magn. Reson., 1998, 10, 197.
    43.U. Matenaar, J. Richter, and M. D. Zeidler, J. Magn. Reson. A, 1996, 122, 72.
    44.K. Hayamizu, Y. Aihara, S. Arai, W. S. Price, Solid State Ionics, 1998, 107, 1.
    45.K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem. B, 1999, 103, 519.
    46.K. Hayamizu, Y. Aihara, S. Arai, W. S. Price, Electrochim. Acta, 2000, 45, 1313.
    47.Y. Aihara, S. Arai, K. Hayamizu, Electrochim. Acta, 2000, 45, 1321.
    47.F. C. Gozzo, L. S. Santos, R. Augusti, C. S. Consorti, J. Dupont, M. N. Eberlin, Chem. Eur. J., 2004, 10, 6187-6193.

    無法下載圖示 校內:2307-08-08公開
    校外:2307-08-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE