簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsai, Tsung-Han
論文名稱: 沉積不同電極圖形於鐵酸鉍光檢測器之光響應探討
Investigation of optical responsivity of BiFeO3-based photodetectors equipped with different electrode patterns
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 光檢測器鐵酸鉍光響應磁滯曲線極化
外文關鍵詞: Photodetector, Bismuth Ferrite film, Photoresponse, Hysteresis loop, Polarization
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵酸鉍作為現在熱門的鐵電材料,因有著相對高的居禮溫度和尼爾溫度,其在室溫下具有多鐵性的特性。此外,相較於其他鐵電材料,鐵酸鉍有著較低的能隙,使其在可見光以及紫外光波段能夠有良好的吸收特性。
    本研究中,採用了兩種不同的金屬電極圖形,為直線型電極以及彎曲型電極,每種電極皆包含5種不同數量之指叉電極。設計之目的在於探討每種圖形在不同入射光偏振的模式下,產生的光電流以及磁滯曲線。作為主動介電層材料的鐵酸鉍,透過射頻磁控濺鍍系統沉積於矽基板上,而氧化銦錫用於2個電極圖形之材料。
    首先對BFO薄膜進行XRD、XPS以及吸收量測。XRD圖表明BFO薄膜在室溫之下屬於R3c空間群且沒有觀察到第二相或雜質。在XPS圖表明BFO薄膜中存在大量比例的氧空缺。
    在量測包含三大部分。首先,研究中在不同圖形下量測了一系列的磁滯曲線,並證明了鉍鐵氧體薄膜中的空間電荷分佈不均。這些不對稱電荷會產生額外的電場而抵消自發極化的極性,進而導致在測量的磁滯曲線中觀察到去極化。
    其次,測量了元件的光電流和暗電流,結果表明僅檢測到光電流的輕微增加,這是由於受到 BFO 膜中大量氧空位導致暗電流過大的不利影響。而這些氧空位充當電子電洞對複合中心,會直接導致光電流的減少。
    在第三部分中,使用線性偏振光和圓形偏振光作為光檢測的入射光源。如測量結果所示,在圓形偏振光的照射下,無論其旋性方向為何,與線性偏振光相比,具有彎曲指叉電極能夠檢測到更高的光電流。特別是具有八對彎曲指叉電極的元件,能夠使電流增強高達近 60%。
    除了磁滯曲線和光暗電流量測,也對元件進行響應度量測。在與具有彎曲型電極的元件相比,具有直線型電極的元件能夠達到2.15A/W的響應度。

    Bismuth ferrite, one of the popular ferroelectric materials, has multiferroic properties at room temperature due to its relatively high Curie temperature and Néel temperature. In addition, compared with other ferroelectric materials, bismuth ferrite has a lower bandgap, which enables it to have good absorption properties in the visible and ultraviolet light regions.
    In this study, two different metal electrode patterns are adopted, namely, the straight and curved electrodes, each of which contains 5 different numbers of interdigitated electrodes. The design purpose is to investigate the photocurrent and hysteresis loop as a result of exposing each pattern to different incident light polarizations. Bismuth ferrite, as an active dielectric material for light absorption, is deposited on a silicon substrate by RF magnetron sputtering, while indium tin oxide is used as the material for the two electrode patterns.
    In the material analysis part, XRD, XPS and absorption measurements are performed on the BFO films. The XRD patterns show that BFO film belongs to the R3c space group at room temperature, and the second phases or impurities are not observed. The XPS images show that the BFO films contain a large proportion of oxygen vacancies.
    The measurements consist of three parts. First, a series of hysteresis curves of the component under study is measured with distinct patterns, evincing the bismuth ferrite film with inhomogeneous distribution of space charges. These asymmetrical charges are expected to generate an additional electric field to counteract the polarity of the spontaneous polarization, leading to depolarization as observed from the measured hysteresis loops.
    Second, both the photocurrent and dark current of the devices are measured, which further reveals that a slight increase in photocurrent has only been detected which is adversely affected by a large dark current brought forth by a large number of oxygen vacancies in the BFO film. These oxygen vacancies act as electron-hole pair recombination centers that are directly responsible for the curtailment of the photocurrent.
    In the third part, both linearly and circularly polarized light beams are used as incident light for photodetection. As measurements have shown, with the illumination of the circularly polarized light, regardless of its handedness, the sample with the curved interdigitated electrode would yield the detection of a higher photocurrent as compared to linearly polarized light. Specifically, the device with eight pairs of curved interdigitated electrodes could render a current enhancement up to nearly 60%.
    In addition to the hysteresis curve and photocurrent/dark current measurements, the responsivities of the devices are also characterized. As compared to the photodetectors with curved electrodes, the ones with straight interdigitated electrodes could achieve a responsivity of 2.15 A/W.

    中文摘要 I SUMMARY III 誌謝 XVI 目錄 XVII 表目錄 XXI 圖目錄 XXII 1 第一章 緒論 1 1.1 前言 1 1.1.1 光纖通訊以及感測器 1 1.1.2 鐵電材料 2 1.1.3 研究動機與目的 3 1.2 論文架構 4 2 第二章 材料理論背景 5 2.1 氧化銦錫 5 2.2 介電材料的極化 7 2.3 鐵電材料 10 2.3.1 鐵電材料的域 11 2.3.2 鐵電材料的極化與電滯曲線 12 2.4 鈣鈦礦材料 14 2.4.1 BiFeO3材料性質 16 2.5 光伏效應 18 2.5.1 鐵電材料與光伏效應 18 2.5.2 體光伏效應 19 2.5.3 域壁理論[35] 21 2.5.4 蕭特基接面效應 24 2.5.5 去極化場效應 26 2.6 金半電流傳導機制與金半金光檢測器 27 2.6.1 金半接面 27 2.6.2 電流傳導機制 28 2.6.3 金半金光檢測器 29 2.6.4 光響應度、偵測率以及響應速度 31 3 第三章 元件製程以及量測儀器 32 3.1 光檢測器元件製程步驟 32 3.1.1 光罩設計 34 3.1.2 試片基板清洗 39 3.1.3 BFO介電層備製 40 3.1.4 黃光微影製程 41 3.1.5 鍍電極 43 3.2 製程與量測使用機台 44 3.2.1 射頻磁控濺鍍系統 44 3.2.2 電壓電流量測儀器 45 3.2.3 單光儀光照儀器 46 4 第四章 量測與結果分析 48 4.1 BiFeO3薄膜特性分析 48 4.1.1 薄膜XRD分析 48 4.1.2 薄膜XPS分析 49 4.1.3 薄膜穿透、反射分析 52 4.2 BiFeO3薄膜鐵電材料磁滯曲線特性 54 4.2.1 直線型電極 54 4.2.2 彎曲型電極 58 4.3 直線型與彎曲型電極之光暗電流分析 62 4.4 直線型於線性光與偏振光下之電流分析 68 4.5 彎曲型於線性光與偏振光下之電流分析 73 4.6 光響應度量測結果 78 5 第五章 結論與未來工作 80 5.1 結果與討論 80 5.2 未來工作 82 參考文獻 83

    [1] http://library.taiwanschoolnet.org/diplomacy1/wfs100/robc1.htm
    [2] https://networkel.com/network-fiber-optic-cable-fundamentals/
    [3] Y. Ishikawa, J. Osaka, & K. Wada, "Germanium photodetectors in silicon photonics." IEEE LEOS Annual Meeting Conference Proceedings , pp. 367-368, 2009
    [4] M. Wang, H. Wei, Y. Wu, J. Jia, C. Yang, Y. Chen, X. Chen, & B. Cao, "Polarization-enhanced bulk photovoltaic effect of BiFeO3 epitaxial film under standard solar illumination."Physics Letters A, vol. 384, no. 32, p. 126831, 2020.
    [5] Y. Zhang, H. Sun, C. Yang, H. Su, & X. Liu, "Modulating photovoltaic conversion efficiency of BiFeO3-based ferroelectric films by the introduction of electron transport layers. " ACS Applied Energy Materials, vol. 2, no. 8, pp 5540-5546, 2019.
    [6] T. Yang, J. Wei, Y. Guo, Z. Lv, Z. Xu, & Z. Cheng, "Manipulation of oxygen vacancy for high photovoltaic output in bismuth ferrite films." ACS applied materials & interfaces, vol. 11, no. 26, pp. 23372-23381, 2019.
    [7] R. Nechache, C. Harnagea, S. Licoccia, E. Traversa, A. Ruediger, A. Pignolet, & F. Rosei, "Photovoltaic properties of Bi2FeCrO6 epitaxial thin films. " Applied Physics Letters, vol. 98, no. 20, pp. 202902, 2011.
    [8] J. Q. Dai, J. W. Xu, & J. H. Zhu, "Thermodynamic stability of BiFeO3 (0001) surfaces from ab initio theory." ACS applied materials & interfaces, vol. 9, no. 3, pp. 3168-3177, 2017.
    [9] Y. Wu, X. Han, & H. Huang, "Structural Transformation Pathways of Multiferroic BiFeO3 under High Pressures." The Journal of Physical Chemistry C, vol. 122, no. 12, pp. 6852-6857, 2018.
    [10] S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, & J. L. Musfeldt, "Photoconductivity in BiFeO3 thin films."Applied Physics Letters, vol. 92, no. 9, p. 091905, 2008.
    [11] J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, D. G. Schlom , "Optical band gap of BiFeO3 grown by molecular-beam epitaxy. " Applied Physics Letters, vol. 92, no. 14, p. 142908, 2008.
    [12] K. T. Butler, J. M. Frost, & A. Walsh, "Ferroelectric materials for solar energy conversion: photoferroics revisited. "Energy & Environmental Science, vol. 8, no. 3, pp. 838-848, 2015.
    [13] M. Yang, A. Bhatnagar, & M. Alexe, "Electronic origin and tailoring of photovoltaic effect in BiFeO3 single crystals." Advanced Electronic Materials, vol. 1, no. 11, p. 1500139, 2015.
    [14] W. Dong, Y. Guo, B. Guo, H. Liu, H. Li, & H. Liu, "Photovoltaic properties of BiFeO3 thin film capacitors by using Al-doped zinc oxide as top electrode." Materials Letters, vol. 91, pp. 359-361, 2013.
    [15] W. Ji, K. Yao, & Y. C. Liang, "Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films." Advanced Materials, vol. 22, no. 15, pp. 1763-1766, 2010.
    [16] Z. Sun, J. Wei, T. Yang, Y. Li, Z. Liu, G. Chen, T. Wang, H. Sun, and Z. Cheng, "Integrating Band Engineering and the Flexoelectric Effect Induced by a Composition Gradient for High Photocurrent Density in Bismuth Ferrite Films." ACS Applied Materials & Interfaces, vol. 13, no. 42, pp. 49850-49859, 2021.
    [17] Y. Guo, B. Guo, W. Dong, H. Li, & H. Liu, "Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films." Nanotechnology, vol. 25, no. 27, p. 275201, 2013.
    [18] R. L. Gao, H. W. Yang, Y. S. Chen, J. R. Sun, Y. G. Zhao, & B. G. Shen, "Oxygen vacancies induced switchable and nonswitchable photovoltaic effects in Ag/Bi0.9La0. 1FeO3/La0.7Sr0.3MnO3 sandwiched capacitors. "Applied Physics Letters, vol. 104, no. 3, p. 031906, 2014.
    [19] 潘漢昌, 蕭明華, 蘇健穎, 蕭健男, "透明導電薄膜簡介," 科儀新知 , vol. 26, no. 1, pp. 46-55, 2004.
    [20] T. W. Dakin, "Conduction and polarization mechanisms and trends in dielectric. " IEEE Electrical Insulation Magazine, vol. 22, no. 5, pp. 11-28, 2006.
    [21] J. E. IBRAHIM, "ENHANCEMENT OF STRUCTURAL AND MAGNETIC PROPERTIES OF Eu AND Fe DOPED GdMnO3 AND Cr Doped HoMnO3 MULTIFERROIC CERAMICS " (Doctoral dissertation, MARMARA UNIVERSITY), 2015.
    [22] S. Liu, B. Shen, H. Hao, & J. Zhai, "Glass–ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications." Journal of Materials Chemistry C, vol. 7, no. 48, pp. 15118-15135, 2019.
    [23] T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M. H. Park, S. Fichtner, P. D. Lomenzo, & U. Schroeder, "Next generation ferroelectric materials for semiconductor process integration and their applications." Journal of Applied Physics , vol. 129, no. 10, p. 100901, 2021
    [24] P. Marton, I. Rychetsky, and J. Hlinka. "Domain walls of ferroelectric BaTiO3 within the Ginzburg-Landau-Devonshire phenomenological model." Physical Review B, vol. 375, pp. 132-137, 2010.
    [25] Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, & M. Wang, "Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? " Nanoscale Advances, vol. 1, no. 4, pp. 1276-1289, 2019.
    [26] E. Shi, Y. Gao, B. P. Finkenauer, A. H. Coffey, & L. Dou , "Two-dimensional halide perovskite nanomaterials and heterostructures." Chemical Society Reviews , vol. 47, no. 16, pp. 6064-6072, 2018
    [27] P. Fischer, M. Polomska, I. Sosnowska, & M. Szymanski, "Temperature dependence of the crystal and magnetic structures of BiFeO3." Journal of Physics C: Solid State Physics, vol, 13, no. 10, pp. 1931-1940, 1980.
    [28] C. Michel, J. M. Moreau, G. D. Achenbach, R. Gerson, & W. J. James, "The atomic structure of BiFeO3. " Solid State Communications, vol. 7, no. 9, pp. 701-704, 1969.
    [29] J. H. Lee, M. A. Oak, H. J. Choi, J. Y. Son, & H. M. Jang, "Rhombohedral–orthorhombic morphotropic phase boundary in BiFeO3-based multiferroics: first-principles prediction." Journal of Materials Chemistry, vol. 22, no. 4, pp. 1667-1672, 2012.
    [30] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, & R. Ramesh, "Epitaxial BiFeO3 multiferroic thin film heterostructures. " science, vol. 299, no. 5613, pp. 1719-1722, 2003.
    [31] H. T. Yi, T. Choi, S. G. Choi, Y. S. Oh, & S. W. Cheong, "Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3." Advanced Materials, vol. 23, no. 30, pp. 3403-3407, 2011.
    [32] K. Mistewicz, M. Nowak, & D. Stróż, "A ferroelectric-photovoltaic effect in SbSI nanowires." Nanomaterials, vol. 9, no. 4, p. 580, 2019
    [33] V. M. Fridkin, "Bulk photovoltaic effect in noncentrosymmetric crystals." Crystallography Reports, vol. 46, no. 4, pp. 654-658, 2001.
    [34] S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, & R. Ramesh, "Above-bandgap voltages from ferroelectric photovoltaic devices." Nature nanotechnology, vol. 5, no. 2, pp. 143-147, 2010.
    [35] D. Cao, H. Zhang, L. Fang, W. Dong, F. Zheng, & M. Shen, " Interface layer thickness effect on the photocurrent of Pt sandwiched polycrystalline ferroelectric Pb (Zr, Ti) O3 films." Applied Physics Letters, vol. 97, no. 10, p. 102104, 2010.
    [36] F. Zheng, J. Xu, L. Fang, M. Shen, & X. Wu, " Separation of the Schottky barrier and polarization effects on the photocurrent of Pt sandwiched Pb (Zr0.20 Ti0.80) O3 films. " Applied Physics Letters, vol. 93, no. 17, p. 172101, 2008.
    [37] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, & S. W. Cheong, "Switchable ferroelectric diode and photovoltaic effect in BiFeO3." Science, vol. 324, no. 5923, pp. 63-66, 2009.
    [38] D. Lee, S. H. Baek, T. H. Kim, J. G. Yoon, C. M. Folkman, C. B. Eom, & T. W. Noh, "Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. " Physical Review B, vol. 84, no. 12, p. 125305, 2011.
    [39] D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee, J. G. Yoon, & T. W. Noh, "Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors." Physical review letters, vol. 95, no. 23, p. 237602, 2005.
    [40] R. W. Chuang and T. K. Hung, "Suppressing the Dark Current in Si/SiGe Heterostructural MSM Infrared Photodetectors Achievable through Anodic and Photochemical Vapor-Deposited Oxidation/Passivation Techniques"國立成功大學微電子工程研究所碩士論文, 2009.
    [41] D. Singh, T. Tabari, M. Ebadi, M. Trochowski, M. B. Yagci, & W. Macyk, "Efficient synthesis of BiFeO3 by the microwave-assisted sol-gel method :“A” site influence on the photoelectrochemical activity of perovskites. "Applied Surface Science, vol. 471, pp. 1017-1027, 2019.
    [42] A. Sarkar, & G. G. Khan, "Synthesis of BiFeO3 nanoparticle anchored TiO2-BiFeO3 nano-heterostructure and exploring its different electrochemical aspects as electrode." Materials Today: Proceedings, vol. 5, no. 3, pp. 10177-10184, 2018.
    [43] J. Wang, L. Luo, C. Han, R. Yun, X. Tang, Y. Zhu, Z. Nie, W. Zhao, & Feng, Z. "The Microstructure, electric, optical and photovoltaic properties of BiFeO3 thin films prepared by low temperature sol–gel method. " Materials, vol. 12, no. 9, p. 1444, 2019.
    [44] Z. Li, Y. Zhao, W. L. Li, R. Song, W. Zhao, Z. Wang, & W. D. Fei, "Photovoltaic effect induced by self-polarization in BiFeO3 films. " The Journal of Physical Chemistry C, vol. 125, no. 17, pp. 9411-9418, 2021.
    [45] S. Okamura, S. Miyata, Y. Mizutani, T. Nishida, & T. Shiosaki, "Conspicuous voltage shift of DE hysteresis loop and asymmetric depolarization in Pb-based ferroelectric thin films." Japanese journal of applied physics, vol. 38, no. 9B, pp. 5364-5367, 1999.
    [46] S. Li, J. Yue, X. Ji, C. Lu, Z. Yan, P. Li, D. Guo, Z. Wu & W. Tang, "Oxygen vacancies modulating the photodetector performances in ε-Ga2O3 thin films." Journal of Materials Chemistry C, vol. 9, no. 16, pp. 5437-5444, 2021.
    [47] R. Zhao, N. Ma, K. Song, & Y. Yang, "Boosting photocurrent via heating BiFeO3 materials for enhanced self‐powered UV photodetectors." Advanced Functional Materials, vol. 30, no. 6, p. 1906232, 2020.
    [48] R. K. Upadhyay, A. P. Singh, D. Upadhyay, D. K. Jarwal, C. Kumar, & S. Jit , "Solid-state synthesized BiFeO3 perovskite-based fast-response white-light photodetector. " IEEE Electron Device Letters, vol. 41, no. 8, pp. 1225-1228, 2020.
    [49] R. K. Upadhyay, A. P. Singh, D. Upadhyay, A. Kumar, & S. Jit, "Fabrication and characterization of BiFeO3/CdSe quantum dotbased photodetector. " AIP Conference Proceedings, vol. 2265, no. 1, p. 030470, 2020.
    [50] M. S. Tsai, S. C. Sun, & T. Y. Tseng, "Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering. " Journal of Applied Physics, vol. 82, no. 7, pp. 3482-3487, 1997.
    [51] P. P. Adelyn, U. Hashim, Y. P. Ha, M. M. Arshad, A. R. Ruslinda, R. M. Ayub, C. B. Gopinath, C. H. Voonl, & K. L. Foo, "Transparent mask design and fabrication of interdigitated electrodes. " IEEE Regional Symposium on Micro and Nanoelectronics (RSM), pp. 1-4, 2015.
    [52] L. Ribeiro, & F. Fruett, "Analysis of the Planar Electrode Morphology for Capacitive Chemical Sensors." Proceedings of the Sensor Devices, Venice, Italy, pp. 179-182, 2015.

    無法下載圖示 校內:2027-09-07公開
    校外:2027-09-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE