| 研究生: |
原田成俊 Tien, Cheng-Chun Yuan |
|---|---|
| 論文名稱: |
多軸向鉛心橡膠支承運用於科技廠房之研究 Application of Biaxial Lead Rubber Bearings in High-tech Factories |
| 指導教授: |
朱聖浩
Ju, Shen-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 高科技廠房 、鉛心橡膠支承 、雙軸向行為 、扭轉耦合效應 、微震 |
| 外文關鍵詞: | high-tech factories, lead rubber bearing, biaxial behavior, torsional coupling effect, micro-vibration |
| 相關次數: | 點閱:139 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鉛心橡膠支承(LRB)有提高結構物自然週期避開地震最大反應、無須改變上部結構、日後維護等優點。特別適合短週期、內部儀器與產品額貴的高科技廠房。目前科技廠房無法推廣使用LRB的原因,在於不了解安裝LRB後是否會放大其微振反應。因此本研究利用已建立實際尺寸之高科技廠房數值模型,並新建立二維LRB有限元素數值模型,考量到目前耐震規範仍然以單軸向行為做為設計考量並未考量到雙軸向所造成扭轉耦合效應。
本篇論文將探討不同地震加載反應、微振反應和不同LRB參數影響,得到隔震效果非常好,可減少約百分之七十到百分之八十的地震力;微振方面,LRB不受內部移動式起重機造成微振動影響,但是風力加載時,一樓RC層明顯的微振放大反應,仍需要探討如何減少風力造成影響,其分析程式與研究成果皆為公開資源,方便日後顧問公司做隔震設計之參考。
The lead rubber bearing (LRB) has the advantages of increasing the natural period of the structure, avoiding the maximum response of the earthquake and eliminating the need to change the superstructure and facilitating maintenance. It is especially suitable for high-tech factories with a short period and expensive internal instrument products. High-tech factories are unable to promote the use of LRB because one does not know whether it will amplify micro-vibration after installing LRBs. Therefore, this study makes use of the numerical model of high-tech factories that has established the actual size and newly establishes the two-way LRB finite element numerical model. Because current seismic specifications still take uniaxial behavior as a design consideration, and it does not consider the biaxial torsional coupling effect.
This paper will explore the effects of different seismic loading reactions, micro-vibration reactions, different LRB parameters, and the isolation effect is very well which can reduce the seismic force by about 70% to 80%. LRBs are not affected by internal mobile cranes in terms of micro-vibration, but the apparent nuisance amplification reaction of the RC layer on the first floor during wind loading still needs to explore how to reduce the impact of wind. The analysis program and research results are all open resources it will facilitate future reference for the isolation design of consultants.
1. Abe, M., Yoshida, J., Fujino, Y., Multiaxial behaviors of laminated rubber bearings and their modeling. I: experimental study. Journal of Structural Engineering, (2004), 130(8), 1119–1132.
2. Al-Kutti, W., Islam, A.B.M.S., Potential design of seismic vulnerable buildings incorporating lead rubber bearing. Buildings, (2019), 9(2),37.
3. Ambasta, S., Sahu, D., Khare, G.P., Analysis of the base isolated building (lead plug bearing) in Etabs. International Research Journal of Engineering and Technology, (2018), 5(1), 404-410.
4. Ali, H.-E. M., Abdel-Ghaffar, A. M., Modeling of rubber and lead passive-control bearings for seismic analysis. Journal of Structural Engineering, (1995), 121(7), 1134–1144.
5. Deb, S. K., Paul, D. K., & Thakkar, S. K., Simplified non‐linear dynamic analysis of base isolated buildings subjected to general plane motion. Engineering Computations, (1997), 14(5), 542–557.
6. Fujita, T., Sasaki, Y., Fujimoto, S., Tsuruya, C., Seismic isolation of industrial facilities using lead-rubber bearing. JSME International Journal. Ser. 3, Vibration, Control Engineering, Engineering for Industry, (1990), 33(3), 427–434.
7. Guo, X. X., Development and application of micro-vibration control technology for high-tech factories buildings. (2019).
8. Hu, J. W., Response of seismically isolated steel frame buildings with sustainable lead-rubber bearing (LRB) isolator devices subjected to near-fault (NF) ground motions, (2015), 7(1), 111-137.
9. Huang, W. H., Fenves, G. L., Whittaker, A. S., Mahin, S. A., Characterization of seismic isolation bearings for bridges from bi-directional testing, (2000), the12 WCEE.
10. Hwang, J. S., Chiou, J. M., An equivalent linear model of lead-rubber seismic isolation bearings. Engineering Structures, (1996), 18(7), 528–536.
11. Islam, A. B. M. S., Hussain, R. R., Jumaat, M. Z., Rahman, M. A., Nonlinear dynamically automated excursions for rubber-steel bearing isolation in multi-storey construction. Automation in Construction, (2013), 30, 265–275.
12. Ju, S. H., Comparison of crane induced vibration on steel structural levels in high-tech factories using FEA and experiments. 7th International Symposium on Environmental Vibration and Transportation Geodynamics, (2017), 447-453.
13. Jangid, R. S., Seismic response of isolated bridges. Journal of Bridge Engineering, (2004), 9(2), 156–166.
14. Kalpakidis, I. V., Constantinou, M. C., Whittaker, A. S., Modeling strength degradation in lead-rubber bearings under earthquake shaking. Earthquake Engineering & Structural Dynamics, (2010), 39(13), 1533–1549.
15. Kikuchi, M., Aiken, I. D., An analytical hysteresis model for elastomeric seismic isolation bearings. Earthquake Engineering & Structural Dynamics, (1997), 26(2), 215–231.
16. Kalpakidis, I. V., Constantinou, M. C., Principles of scaling and similarity for testing of lead-rubber bearings. Earthquake Engineering & Structural Dynamics, (2010), 39(13), 1551–1568.
17. Nagarajaiah, S., Reinhorn, A. M., Constantinou, M. C., Nlinear dynamic analysis of 3‐d‐base‐isolated structures. Journal of Structural Engineering, (1991), 117(7).
18. Park, Y. J., Wen, Y. K., Ang, A. H.-S., Random vibration of hysteretic systems under bi-directional ground motions. Earthquake Engineering & Structural Dynamics, (1986), 14(4), 543–557.
19. Ryan, K. L., Kelly, J. M., Chopra, A. K, Nonlinear model for lead–rubber bearings including axial-load effects. Journal of Engineering Mechanics, (2005), 131(12), 1270–1278.
20. Salic, R. B., Garevski, M. A., Milutinovic, Z. V., Response of lead-rubber bearing isolated structure, (2008), the14 WCEE Beijing, China
21. Turkington, D. H., Carr, A. J., Cooke, N., Moss, P. J., Seismic design of bridges on lead‐rubber bearings. Journal of Structural Engineering, (1989), 115(12), 3000–3016.
22. Turkington, D. H., Carr, A. J., Cooke, N., & Moss, P. J., Design method for bridges on lead‐rubber bearings. Journal of Structural Engineering, (1989), 115(12), 3017–3030.
23. Warn, G. P., Whittaker, A. S., Constantinou, M. C., Vertical Stiffness of Elastomeric and Lead–Rubber Seismic Isolation Bearings. Journal of Structural Engineering, (2007), 133(9), 1227–1236.
24. Weisman, J., Warn, G. P., Stability of elastomeric and lead-rubber seismic isolation bearings. Journal of Structural Engineering, (2012), 138(2), 215–223.
25. Wen, Y. K., Method of random vibration of hysteretic systems. Journal of Engineering Mechanics Division, (1976), 102(2), 249-263.
26. Yu, S.W., Study of Vibration Experiments for Bridges and High-tech Building. (2016).
27. Zordan, T., Liu, T., Briseghella, B., Zhang, Q., Improved equivalent viscous damping model for base-isolated structures with lead rubber bearings. Engineering Structures, (2014), 75, 340–352.
28. 內政部頒布,建築物耐震設計規範及解說,2011。
29. 葉祥海等人,「建築物隔震消能規範之示範計畫」,1998。
30. 劉昱霆,「基礎隔震之隔震系統的設計研究」,國立中興大學土木工程學系,碩士論文 (2015)。
31. 何明錦等人,「建築物耐震設計規範隔震設計及含被動消能系統設計專章研修與示範例研擬」,2006,內政部建築研究所研究報告。
32. 台灣隔震科技有限公司隔震器標準品規格表。http://www.tsitcorp.com/content/node/25/#隔震標準品規格,2019/7/24。