簡易檢索 / 詳目顯示

研究生: 湯睿意
Ron Evan Del Rosario
論文名稱: The Underlying Factors of How Information Sharing on Twitter Could Lead to Fake News During Times of Socio-Economic Crisis
The Underlying Factors of How Information Sharing on Twitter Could Lead to Fake News During Times of Socio-Economic Crisis
指導教授: 許介文
Hsu, Chieh-Wen Ed
學位類別: 碩士
Master
系所名稱: 管理學院 - 國際經營管理研究所
Institute of International Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 62
外文關鍵詞: False information, Socio-economic Crisis, Rumors, Fake News, Twitter, News sharing, Rumor theory, Social interactions, Personal involvement, Anxiety, Content ambiguity, Source ambiguity
相關次數: 點閱:222下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Researchers at the Massachusetts Institute of Technology found that fake news spreads faster on Twitter than real news. Increased digital use has led to spread of fake news on social media platforms, especially on Twitter, where a single tweet can instantly form a flow of information. The present study investigated the underlying factors that could contribute to the spread of fake news on Twitter during socio-economic crises by referring to the Rumor theory as its theoretical foundation. The socio-economic crises under analysis in this study are the COVID-19 Anti-Vaccination Movement, and the exacerbated Australian Bushfire Crisis, which both have affected businesses and enterprises on a large scale. By utilizing Twitter API, relevant tweets during the said socio-economic crises were collected and these factors determined how tweets were coded: anxiety, ambiguous source, ambiguous content, user’s personal involvement, and social interactions. Finally, logistics regression analysis took place to predict the likelihood of fake news spread due to the factors mentioned. The aim of this research is to uncover what factors contribute to spread of fake news, as well as discern the most significant factor that could lead to spread of fake news on social networking platforms - specifically on Twitter.

    TABLE OF CONTENTS ABSTRACT I ACKNOWLEDGEMENTS II TABLE OF CONTENTS III LIST OF TABLES VI LIST OF FIGURES VII CHAPTER ONE INTRODUCTION 1 1.1 Research Background. 1 1.2 Topic Importance. 2 1.3 Literature Gaps and Research Motivations. 3 1.4 Research Questions. 5 CHAPTER TWO LITERATURE REVIEW 6 2.1 Twitter, One of the Most Popular Information-sharing Platforms. 6 2.2 Fake News on Twitter and the Relevance of Twitter API. 7 2.3 Spread of Fake News During Socio-Economic Crises. 8 2.4 Spread of Fake News and its link to Emotions. 10 2.5 Backgrounds of Socio-Economic Crises Under Analysis. 11 2.5.1 COVID-19 Anti-Vaccination Movement (Fake News - Hashtag #Plandemic). 11 2.5.2 Australian Bushfire Crisis (Fake News Hashtag - #ArsonEmergency). 14 2.6 Theoretical Foundations. 17 2.6.1 Rumor Transmission Theory (Buckner, 1965). 17 2.6.2 Rumor Theory (Allport & Postman, 1947). 17 2.7 Anxiety. 21 2.8 Information Ambiguity (Source and Content Ambiguity). 22 2.9 Personal Involvement. 27 2.10 Social Interaction. 28 2.11 Proposed Research Model. 31 CHAPTER THREE METHODOLOGY 32 3.1 Data Collection. 32 3.1.1 Socio-economic Crises Under Analysis. 33 3.2 Unitizing. 35 3.3 Coding Scheme and Measurement. 35 3.4 Data Analysis Method. 37 CHAPTER FOUR RESEARCH RESULTS AND FINDINGS 39 4.1 Research Results. 39 4.2 Findings. 44 CHAPTER FIVE CONCLUSION AND RECOMMENDATIONS 47 5.1 Research Conclusion. 47 5.2 Theoretical Contributions. 47 5.3 Real World Implications. 48 5.4 Limitations and Future Research. 50 REFERENCES 52 APPENDIX 60 A. Coding Scheme (Measurement) 60

    Agrawal, M., Kishore, R., & Rao, R. (2006). Market reactions to E-business outsourcing announcements: An event study. Information & Management, 43(7), 861-873.
    Aldwairi, M., & Alwahedi, A. (2018). Detecting fake news in social media networks. Procedia Computer Science, 141(0), 215-222.
    Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211-236.
    Allport, G. W., & Postman, L. (1947). The psychology of rumor - A rumor theory. Journal of Clinical Psychology, 3(4), 402-403.
    Andı, S., Aytaç, S. E., & Çarkoğlu, A. (2020). Internet and social media use and political knowledge: Evidence from Turkey. Mediterranean Politics, 25(5), 579-599.
    Anthony, S. (1973). Anxiety and rumor. Journal of Social Psychology, 89(1), 91-98.
    Apuke, O. D., & Omar, B. (2021). Fake news and COVID-19: Modelling the predictors of fake news sharing among social media users. Telematics and Informatics, 56(0), 101475-101475.
    Ashton, J. (2021). COVID-19 and the anti-vaxxers. Journal of the Royal Society of Medicine, 114(1), 42-43.
    Atodiresei, C.-S., Tănăselea, A., & Iftene, A. (2018). Identifying fake news and fake users on Twitter. Procedia Computer Science, 126(0), 451-461.
    Ball-Rokeach, S. J. (1973). From pervasive ambiguity to a definition of the situation. Sociometry, 36(3), 378-389.
    Ball, P. (2020). Anti-vaccine movement could undermine efforts to end coronavirus pandemic, researchers warn. Nature, 581(7808), 251-252.
    Bennett, M., & Collins, P. (2010). The law and economics of information sharing: The good, the bad and the ugly. European Competition Journal, 6(2), 311-337.
    Berman, J. M. (2020). Anti-vaxxers: How to challenge a misinformed movement. New York, NY: MIT Press. Retrieved from https://mitpress.mit.edu/blog/facts-anti-vaxxer-how-challenge-misinformed-movement
    Bernal, J. L., Andrews, N., Gower, C., Robertson, C., Stowe, J., Tessier, E., Ramsay, M. (2021). Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study. British Medical Journal, 373(0), 1088.
    Blume, S. (2006). Anti-vaccination movements and their interpretations. Social Science and Medicine, 62(3), 628-642.
    Bordia, P. (1996). Studying verbal interaction on the Internet: The case of rumor transmission research. Behavior Research Methods, Instruments, and Computers, 28(2), 149-151.
    Bordia, P., & DiFonzo, N. (2004). Problem solving in social interactions on the Internet: Rumor as social cognition. Social Psychology Quarterly, 67(1), 33-49.
    Brosh-Nissimov, T., Orenbuch-Harroch, E., Chowers, M., Elbaz, M., Nesher, L., Stein, M., Wiener-Well, Y. (2021). BNT162b2 vaccine breakthrough: Clinical characteristics of 152 fully vaccinated hospitalized COVID-19 patients in Israel. Clinical Microbiology and Infection, 27(11), 1652-1657.
    Brown, N. I., & Peters, J. (2018). Say this not that: Government regulation and control of social media. Syracuse Law Review, 68(3), 521-546. Retrieved from https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/syrlr68&section=28
    Buchanan, T., & Benson, V. (2019). Spreading disinformation on Facebook: Do trust in message source, risk propensity, or personality affect the organic reach of “fake news”? Social Media and Society, 5(4), 2056305119888654.
    Buckner, H. T. (1965). A theory of rumor transmission. Public Opinion Quarterly, 29(1), 54-70.
    Burki, T. (2020). The online anti-vaccine movement in the age of COVID-19. The Lancet Digital Health, 2(10), e504-e505.
    Caplow, T. (1947). Rumors in war. Social Forces, 25(3), 298-302.
    Casey, S. (2015). Love in the age of measles: The anti-vaccination movement in America. (Master's thesis). Arkansas State University, Retrieved from https://search.proquest.com/dissertations-theses/love-age-measles-anti-vaccination-movement/docview/1672951591/se-2?accountid=13828%0Ahttp://find.shef.ac.uk/openurl/44SFD/44SFD_services_page?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&
    Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on Twitter. Paper presented at the Proceedings of the 20th international conference on World wide web, Hyberabad, India.
    Chua, A. Y., & Banerjee, S. (2018). Intentions to trust and share online health rumors: An experiment with medical professionals. Computers in Human Behavior, 87(0), 1-9.
    Dayani, R., Chhabra, N., Kadian, T., & Kaushal, R. (2015). Rumor detection in twitter: An analysis in retrospect. Paper presented at the The 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), Kolkata, India.
    Dean, B. (2021, October 8). How many people use Twitter in 2021? [New Twitter Stats]. Retrieved from https://backlinko.com/twitter-users
    Deb, P., Moradkhani, H., Abbaszadeh, P., Kiem, A. S., Engström, J., Keellings, D., & Sharma, A. (2020). Causes of the Widespread 2019–2020 Australian Bushfire Season. Earth's Future, 8(11), e2020EF001671-e002020EF001671.
    Deligiannis, N., Huu, T., Nguyen, D. M., & Luo, X. (2018). Deep learning for geolocating social media users and detecting fake news. Paper presented at the NATO Workshop, Brussels, Belgium.
    Dibble, J. L., Hartmann, T., & Rosaen, S. F. (2016). Parasocial Interaction and Parasocial Relationship: Conceptual Clarification and a Critical Assessment of Measures. Human Communication Research, 42(1), 21-44.
    DiFonzo, N., & Bordia, P. (2007). Rumor, gossip and urban legends. Diogenes, 54(1), 19-35.
    Dizikes, P. (2018, March 8). Study: On Twitter, false news travels faster than true stories. Retrieved from https://news.mit.edu/2018/study-twitter-false-news-travels-faster-true-stories-0308
    Duane, W. (2020). Ethical values and responsibilities of directors in the digital Era. In K. Mikhail Yevgenievich & N. Maria Igorevna (Eds.), Challenges and opportunities of corporate governance transformation in the digital era (pp. 91-116), Hershey, Penssylvania, USA.
    Dubé, E., Laberge, C., Guay, M., Bramadat, P., Roy, R., & Bettinger, J. A. (2013). Vaccine hesitancy: An overview. Human Vaccines & Immunotherapeutics, 9(8), 1763-1773.
    Ferrara, E., Chang, H., Chen, E., Muric, G., & Patel, J. (2020). Characterizing social media manipulation in the 2020 U.S. presidential election. First Monday, 25(11), 2-10.
    Festinger, L. (1957). A theory of cognitive dissonance. Psychological Theories from a Structuralist Point of View, 6(2), 33-62.
    Festinger, L. (1962). Cognitive dissonance. Scientific American, 207(4), 93-106.
    Filkov, A. I., Ngo, T., Matthews, S., Telfer, S., & Penman, T. D. (2020). Impact of Australia's catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. Journal of Safety Science and Resilience, 1(1), 44-56.
    Finn, S., Metaxas, P. T., & Mustafaraj, E. (2015). Spread and skepticism: Metrics of propagation on Twitter. Paper presented at the Proceedings of the ACM Web Science Conference, New York, NY.
    Gangarosa, E. J., Galazka, A. M., Wolfe, C. R., Phillips, L. M., Miller, E., Chen, R. T., & Gangarosa, R. (1998). Impact of anti-vaccine movements on pertussis control: the untold story. The Lancet, 351(9099), 356-361.
    Gee, J., Marquez, P., Su, J., Calvert, G. M., Liu, R., Myers, T., Shimabukuro, T. (2021). First month of COVID-19 vaccine safety monitoring - United States, December 14, 2020 - January 13, 2021. Morbidity and Mortality Weekly Report, 70(8), 283-288.
    George, L. (2015). Digital technology, disruption and the market for news. In R. G. Picard & S. S. Wildman (Eds.), Handbook on the Economics of the Media (pp. 259-273), London, UK.
    Gerber, M. S. (2014). Predicting crime using Twitter and kernel density estimation. Decision Support Systems, 61(1), 115-125.
    Gharpure, R., Hunter, C. M., Schnall, A. H., Barrett, C. E., Kirby, A. E., Kunz, J., Garcia‐Williams, A. G. (2020). Knowledge and practices regarding safe household cleaning and disinfection for COVID‐19 prevention — United States, May 2020. American Journal of Transplantation, 20(10), 2946-2950.
    Glasper, A. (2021). Dispelling anti-vaxxer misinformation about COVID-19 vaccination. British Journal of Nursing, 30(6), 374-376.
    Golovchenko, Y., Buntain, C., Eady, G., Brown, M. A., & Tucker, J. A. (2020). Cross-Platform State Propaganda: Russian Trolls on Twitter and YouTube during the 2016 U.S. Presidential Election. International Journal of Press/Politics, 25(3), 357-389.
    Gonzalez, R. A., & Bharosa, N. (2009). A framework linking information quality dimensions and coordination challenges during interagency crisis response. Paper presented at the 2009 42nd Hawaii International Conference on System Sciences, Honolulu, Hawaii, USA.
    Graham, T. (2020, October 5). Bushfires, bots and arson claims: Australia flung in the global disinformation spotlight. The Conversation. Retrieved from https://theconversation.com/bushfires-bots-and-arson-claims-australia-flung-in-the-global-disinformation-spotlight-129556
    Halpern, D., Valenzuela, S., Katz, J., & Miranda, J. P. (2019). From belief in conspiracy theories to trust in others: Which factors influence exposure, believing and sharing fake news. Paper presented at the International Conference on Human-Computer Interaction, Paphos, Cyprus.
    He, L., Yang, H., Xiong, X., & Lai, K. (2019). Online Rumor Transmission Among Younger and Older Adults. SAGE Open, 9(3), 2158244019876273-2158244019876273.
    Hopp, T., Ferrucci, P., & Vargo, C. J. (2020). Why do people share ideologically extreme, false, and misleading content on social media? A self-report and trace data–based analysis of countermedia content dissemination on Facebook and Twitter. Human Communication Research, 46(4), 357-384.
    Kaplan, A. M. (2015). Social Media, the Digital Revolution, and the Business of Media. JMM International Journal on Media Management, 17(4), 197-199.
    Kearney, M. D., Chiang, S. C., & Massey, P. M. (2020). The Twitter origins and evolution of the COVID-19 “plandemic” conspiracy theory. Harvard Kennedy School Misinformation Review, 1(3), 1-8.
    Kelly Garrett, R. (2006). Protest in an information society: A review of literature on social movements and new ICTs. Information, Communication & Society, 9(2), 202-224.
    Kendra, J. M., & Wachtendorf, T. (2003). Elements of resilience after the World Trade Center Disaster: Reconstituting New York City's emergency operations centre. Disasters, 27(1), 37-53.
    Knight, P. (2002). Conspiracy nation: The politics of paranoia in postwar America. New York University Press, 6(3), 600-602.
    Knopf, T. A. (1975). Rumor controls: A reappraisal. Phylon (1960-), 36(1), 23-31.
    Komori, M., Miura, A., Matsumura, N., Hiraishi, K., & Maeda, K. (2021). Spread of risk information through microblogs: Twitter users with more mutual connections relay news that is more Dreadful1. Japanese Psychological Research, 63(1), 1-12.
    Krüger, N., Stieglitz, S., & Potthoff, T. (2012, 2012). Brand communication in Twitter - A case study on Adidas. Paper presented at the Pacific Asia Conference on Information Systems, Ho Chi Minh City, Vietnam.
    Kumar, S., Morstatter, F., & Liu, H. (2014). Twitter data analytics. SpringerBriefs in Computer Science, 1(0), 35-48.
    Kumar, S., & Shah, N. (2018). False Information on Web and Social Media: A Survey. Retrieved from http://arxiv.org/abs/1804.08559
    Lachlan, K. A., Spence, P. R., Lin, X., Najarian, K., & Del Greco, M. (2016). Social media and crisis management: CERC, search strategies, and Twitter content. Computers in Human Behavior, 54(0), 647-652.
    Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Rothschild, D. (2018). The science of fake news. Science Journals, 359(6380), 1094-1096.
    Lee, C. S., & Ma, L. (2012). News sharing in social media: The effect of gratifications and prior experience. Computers in Human Behavior, 28(2), 331-339.
    Li, L. T., Yang, S., Kavanaugh, A., Fox, E. A., Sheetz, S. D., Shoemaker, D., Srinivasan, V. (2011). Twitter use during an emergency event: The case of the UT Austin shooting. Paper presented at the Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, Maryland, USA.
    Lotfi, M., Hamblin, M. R., & Rezaei, N. (2020). COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clinica Chimica Acta, 508(0), 254-266.
    MacDonald, N. E. (2015). Vaccine hesitancy: Definition, scope and determinants. Vaccine, 33(34), 4161-4164.
    Madrid-Morales, D., Wasserman, H., Gondwe, G., Ndlovu, K., Sikanku, E., Tulley, M., Uzuegbunam, C. (2021). Motivations for Sharing Misinformation: A Comparative Study in Six Sub-Saharan African Countries. International Journal of Communication, 15(21), 1200-1219.
    Mahase, E. (2020). Covid-19: Pfizer and BioNTech submit vaccine for US authorisation. British Medical Journal, 371(0), m4552-m4552.
    McBryde, E. S., Meehan, M. T., Caldwell, J. M., Adekunle, A. I., Ogunlade, S. T., Kuddus, M. A., Cope, R. C. (2021). Modelling direct and herd protection effects of vaccination against the SARS-CoV-2 Delta variant in Australia. Medical Journal of Australia, 215(9), 427-432.
    McDonald, M. (2021). After the fires? Climate change and security in Australia. Australian Journal of Political Science, 56(1), 1-18.
    McPhail, M. L. (1991). Complicity: The theory of negative difference. Howard Journal of Communications, 3(1-2), 1-13.
    Menard, S. (1995). Applied logistic regression analysis. Quantitative applications in the social sciences(no. 07-106.). Retrieved from https://www.worldcat.org/title/applied-logistic-regression-analysis/oclc/32468615
    Mingst, K. A., Karns, M. P., & Lyon, A. J. (2018). The United Nations in the 21st Century. Routledge Publications, 5(1), 2-25.
    Murray, M. P. (2005). Econometrics : a modern introduction. Upper Saddle River, NJ: Prentice Hall.
    Nelson, T., Kagan, N., Critchlow, C., Hillard, A., & Hsu, A. (2020). The danger of misinformation in the COVID-19 crisis. Missouri medicine, 117(6), 510-512. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/33311767%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7721433
    O'Mahony, L. (2020, October 22). Getting started with data collection using Twitter API v2 in less than an hour. Retrieved from https://towardsdatascience.com/getting-started-with-data-collection-using-twitter-api-v2-in-less-than-an-hour-600fbd5b5558
    Ogasahara, M., Kawashima, H., & Fujishiro, H. (2019). How did rumors on Twitter diffuse and change in expression? An investigation of the process of spreading rumors on Twitter during the 2011 Great East Japan Earthquake. Advances in Human-Computer Interaction, 2019(1), 1-8.
    Oh, O., Agrawal, M., & Rao, H. R. (2013). Community intelligence and social media services: A rumor theoretic analysis of tweets during social crises. MIS Quarterly: Management Information Systems, 37(2), 407-426.
    Pu, W., Cui, J., Wu, D., Shi, T., Chen, Y., Xing, Y., Wang, X. (2021). Unprecedented snow darkening and melting in New Zealand due to 2019–2020 Australian wildfires. Fundamental Research, 1(3), 224-231.
    Rosnow, R. L. (1991). Inside rumor: A personal journey. American Psychologist, 46(5), 484-484.
    Rosnow, R. L., & Fine, G. A. (1976). Rumor and gossip: The social psychology of hearsay. American Psychological Association Journal, 1(0), 141-165.
    Rosnow, R. L., & Foster, E. K. (2005). Rumor and gossip research. Psychological Science Agenda, 19(4), 1-2.
    Rosnow, R. L., & Kimmel, A. (2000). Rumor (edited version). Encyclopedia of Psychology, 7(0), 93-112.
    Runyan, R. C. (2006). Small business in the face of crisis: Identifying barriers to recovery from a natural disaster 1. Journal of Contingencies and Crisis Management, 14(1), 12-26.
    Sapountzaki, K. (2019). The interplay between socio-economic crises and disaster risks : Examples from the developed and developing world. Contributing Paper to Global Assessment Report, 2019(0), 1-31.
    Scanlon, D. P., & Hollenbeak, C. S. (2019). Preventing the next crisis: Six critical questions about the opioid epidemic that need answers. The American Journal of Managed Care, 25(13), S234-S238.
    Schweinsberg, S., Darcy, S., & Beirman, D. (2020). ‘Climate crisis’ and ‘bushfire disaster’: Implications for tourism from the involvement of social media in the 2019–2020 Australian bushfires. Journal of Hospitality and Tourism Management, 43(0), 294-297.
    Shibutani, T. (1966). Improvised news: A sociological study of rumor, Ardent Media Publishing, 1(0), 63-185.
    Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36.
    Sihombing, S. O. (2017). Predicting intention to share news through social media: An empirical analysis in Indonesian youth context. Business and Economic Horizons, 13(4), 468-477.
    Stallings, R. A. (1973). The Community Context of Crisis Management. American Behavioral Scientist, 16(3), 312-325.
    Stephenson, C., Handmer, J., & Betts, R. (2013). Estimating the economic, social and environmental impacts of wildfires in Australia. Environmental Hazards, 12(2), 93-111.
    Sutton, J., Palen, L., & Shlovski, I. (2008). Back-channels on the front lines: Emerging use of social media in the 2007. Paper presented at the Proceedings of ISCRAM 2008 - 5th International Conference on Information Systems for Crisis Response and Management, Washington DC, USA.
    Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics. Pearson Publishing, 5(1), 481-498.
    Tafuri, S., Gallone, M. S., Cappelli, M. G., Martinelli, D., Prato, R., & Germinario, C. (2014). Addressing the anti-vaccination movement and the role of HCWs. Vaccine, 32(38), 4860-4865.
    Tanaka, Y., Sakamoto, Y., & Honda, H. (2014). The impact of posting URLs in disaster-related tweets on rumor spreading behavior. Paper presented at the 2014 47th Hawaii International Conference on System Sciences, Honolulu, Hawaii, USA.
    Tanne, J. H. (2020a). Covid-19: FDA panel votes to approve Pfizer BioNTech vaccine. British Medical Journal, 371(0), m4799.
    Tanne, J. H. (2020b). Covid-19: Pfizer-BioNTech vaccine is rolled out in US. British Medical Journal, 317(0), m4836.
    Tin, D., Hertelendy, A. J., & Ciottone, G. R. (2020). What we learned from the 2019–2020 Australian Bushfire disaster: Making counter-terrorism medicine a strategic preparedness priority. American Journal of Emergency Medicine, 46(0), 742-743.
    Tolley, K. (2019). School Vaccination Wars: The Rise of Anti-Science in the American Anti-Vaccination Societies, 1879–1929. History of Education Quarterly, 59(2), 161-194.
    Torres, R., Gerhart, N., & Negahban, A. (2018). Epistemology in the era of fake news: An exploration of information verification behaviors among social networking site users. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 49(3), 78-97.
    Tsai, M.-K. (2009). Improving communication barriers for on-site information flow: An exploratory study. Advanced Engineering Informatics, 23(3), 323-331.
    Twitter. (n.d.). New user FAQ. Retrieved from https://help.twitter.com/en/resources/new-user-faq#:~:text=A%20Tweet%20is%20any%20message,Tweet%20article%20for%20more%20information.
    Uscinski, J. E., Enders, A. M., Klofstad, C., Seelig, M., Funchion, J., Everett, C., Murthi, M. (2020). Why do people believe COVID-19 conspiracy theories? Harvard Kennedy School Misinformation Review, 1(3), 1-12.
    Valenzuela, S., Correa, T., & Gil de Zúñiga, H. (2018). Ties, Likes, and Tweets: Using Strong and Weak Ties to Explain Differences in Protest Participation Across Facebook and Twitter Use. Political Communication, 35(1), 117-134.
    van Oldenborgh, G. J., Krikken, F., Lewis, S., Leach, N. J., Lehner, F., Saunders, K. R., Otto, F. E. L. (2021). Attribution of the Australian bushfire risk to anthropogenic climate change. Natural Hazards and Earth System Sciences, 21(3), 941-960.
    Velavan, T. P., & Meyer, C. G. (2020). The COVID‐19 epidemic. Tropical Medicine & International Health, 25(3), 278.
    Vlados, C., Deniozos, N., Chatzinikolaou, D., & Demertzis, M. (2018). Towards an evolutionary understanding of the current global socio-economic crisis and restructuring: From a conjunctural to a structural and evolutionary perspective. Research in World Economy, 9(1), 15-33.
    Wang, J., Liu, Z., Zeng, N., Jiang, F., Wang, H., & Ju, W. (2020). Spaceborne detection of XCO2 enhancement induced by Australian mega-bushfires. Environmental Research Letters, 15(12), 124069.
    Weber, D., Nasim, M., Falzon, L., & Mitchell, L. (2020). #ArsonEmergency and Australia’s “Black Summer”: Polarisation and Misinformation on Social Media. Paper presented at the Multidisciplinary International Symposium on Disinformation in Open Online Media, Leiden, the Netherlands.
    Wenger, A. (2004). Crisis and Opportunity: NATO's Transformation and the Multilateralization of Détente, 1966–1968. Journal of Cold War Studies, 6(1), 22-74.
    Wenger, D., & Friedman, B. (1986). Local and national media coverage of disaster: A content analysis of the print media's treatment of disaster myths. International Journal of Mass Emergencies and Disasters, 4(3), 27-50.
    Whitney, M. (2021). 39 Twitter Statistics Marketers Need to Know in 2022. WordStream. Retrieved from https://www.wordstream.com/blog/ws/2020/04/14/twitter-statistics
    World Health Organization. (2021). COVID-19 vaccines. Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines
    Yu, P., Xu, R., Abramson, M. J., Li, S., & Guo, Y. (2020). Bushfires in Australia: A serious health emergency under climate change. The Lancet Planetary Health, 4(1), e7-e8.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE