| 研究生: |
陳宥廷 Chen, Yu-Ting |
|---|---|
| 論文名稱: |
牛血漿蛋白對dipalmitoyl phosphatidylcholine/雙十六碳鏈離子對雙親分子之混合Langmuir單分子層行為的影響 Effects of bovine serum albumin on the mixed Langmuir monolayer behavior of dipalmitoyl phosphatidylcholine with dihexadecyl-chained ion pair amphiphile |
| 指導教授: |
張鑑祥
Chang, Chien-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 氣/液界面 、螢光顯微鏡法 、脂質/蛋白質交互作用 、混合單分子層 、單分子層 |
| 外文關鍵詞: | air/liquid interface, fluorescence microscopy, lipid/protein interaction, mixed monolayer, monolayer |
| 相關次數: | 點閱:162 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用螢光顯微鏡法(fluorescence microscopy, FM)配合表面壓-面積等溫線的量測,探討於連續來回壓縮-擴張界面的條件下,牛血漿白蛋白(bovine serum albumin, BSA)對氣/液界面上 dipalmitoyl phosphatidylcholine (DPPC)/hexadecyltrimethylammonium- hexadecylsulfate (HTMA-HS)(莫耳比3:1)混合單分子層行為的影響。結果顯示DPPC和HTMA-HS可在氣/液界面上互相混合,且有很強的分子間交互作用。此外,添加的HTMA-HS可改善DPPC單分子層崩潰後的再分佈性。
在BSA吸附分子層存在之氣/液界面上分佈DPPC分子形成單分子層後,在壓縮界面的過程中,BSA的脫附會導致界面上DPPC分子的損失。當界面上BSA的量越多時, DPPC 分子的損失就越顯著。由FM影像可觀察到,在混合分子層的壓縮-擴張過程中,BSA會和DPPC分子形成複合物。DPPC 與BSA之間的交互作用可以解釋在BSA脫附的過程中DPPC 分子的損失,使得DPPC分子的動態界面活性受到抑制。
在BSA吸附分子層存在之氣/液界面上分佈HTMA-HS分子形成單分子層後,於連續來回壓縮-擴張界面的條件下,HTMA-HS分子的損失遠比DPPC分子顯著,即HTMA-HS分子容易隨BSA離開氣/液界面,導致界面上HTMA-HS分子的損失,使得HTMA-HS分子的動態界面活性受到抑制。HTMA-HS分子的損失可能與帶正電的頭基HTMA+和帶負電的BSA因靜電相吸,或HTMA-HS分子之碳氫鏈與BSA疏水結構的交互作用有關。因此當BSA離開界面時,也造成HTMA-HS分子的損失。且BSA的吸附量越多,損失的HTMA-HS分子就越多。
在BSA吸附分子層存在之氣/液界面上同時分佈DPPC和HTMA-HS分子形成混合單分子層後,發現BSA抑制單分子層動態界面活性的能力變弱,在BSA脫附的過程中,單分子層的分子損失較不顯著。推測因DPPC與HTMA-HS之間很強的分子間交互作用,使混合單分子層能穩定存在於氣/液界面上,較不易受到BSA的影響。此外,在有BSA的環境下,HTMA-HS仍有助於DPPC單分子層崩潰後的再分佈性。
In this study, the effects of bovine serum albumin (BSA) on the mixed dipalmitoyl phosphatidylcholine (DPPC)/hexadecyltrimethyl- ammonium-hexadecylsulfate (HTMA-HS) (molar ratio = 3:1) monolayer behavior at cyclic air/liquid interfaces were investigated by the fluorescence microscopy (FM) with the measurements of surface pressure-area isotherms. The results showed that DPPC and HTMA-HS were miscible at the air/water interface. In addition, added HTMA-HS could improve the respreading ability of the collapsed DPPC monolayer.
When spreading DPPC molecules onto the air/liquid interface with an adsorbed BSA layer, it was revealed the BSA desorption during the interface compression stage would induce the loss of DPPC molecules at the interface. The higher amount of BSA at the interface, the more pronounced loss of DPPC molecules. During the compression-expansion process for the mixed layers, one could observe from the FM images that BSA would form complexes with DPPC molecules. The interaction between DPPC and BSA could explain the DPPC molecule loss during the BSA desorption process, resulting in the inhibited dynamic surface activity of DPPC molecules.
After spreading HTMA-HS molecules onto the air/liquid interface with an adsorbed BSA layer, under the condition of continuous interface compression-expansion, it was found that the loss of HTMA-HS molecules was more pronounced than that of DPPC molecules. That is, HTMA-HS easily left the air/liquid interface with BSA, causing the loss of HTMA-HS molecules at the interface and the inhibited dynamic surface activity of HTMA-HS molecules. The loss of HTMA-HS molecules was probably related to the electrostatic interaction between the positively charged headgroup, HTMA+, and the negatively charged BSA or to the interaction between the hydrocarbon chains of HTMA-HS molecules and the hydrophobic part of BSA. Therefore, when BSA molecules left the interface, the loss of HTMA-HS molecules resulted. The higher amount of adsorbed BSA, the more pronounced loss of HTMA-HS molecules.
After spreading DPPC and HTMA-HS molecules onto the air/liquid interface with an adsorbed BSA layer, it was found that the ability of BSA to inhibit the dynamic surface activity of a monolayer was lowered. During the BSA desorption process, the molecule loss of the monolayer was less significant. It was proposed that the mixed monolayer could stably stay at the air/liquid interface due to the strong interaction between DPPC and HTMA-HS, and was thus less affected by BSA. Furthermore, in the presence of BSA, HTMA-HS could still improve the respreading ability of the collapsed DPPC monolayer.
Baudouin, S.V., “Exogenous surfactant replacement in ARDS–One day, someday, or never?” N. Engl. J. Med., 351, 853, 2004.
Baoukina, S., Monticelli, L., Risselada, H.J., Marrink, S., and Tieleman, D.P., “The molecular mechanism of lipid monolayer collapse,” PNAS, 105, 10803, 2008.
Bendedouch, D., and Chen, S.H., “Structure and interparticle interactions ofbovine serum-albumin in solution studied by small-angle neutron-scattering,” J. Phys. Chem. B, 87, 1473, 1983.
Bourbon, J.R., “Pulmonary surfactant: biochemical, functional, regulatory, and clinical concepts,” CRC Press, Boca Raton, 1991.
Brancato, S., and Serfis A., “Incorporation of blood-clotting proteins into phospholipid Langmuir monolayers: a fluorescence microscopy study,” J. Colloid Interface Sci., 239, 139, 2001.
Bringezu, F., Ding, J., Brezesinski, G., and Zasadzinski J.A., “Changes in model lung surfactant monolayers induced by palmitic acid,” Langmuir, 17, 4641, 2001.
Cai, P., Flach, C.R., and Mendelsohn, R., “An infrared reflection-absorption spectroscopy study of the secondary structure in (KL4)4K, a therapeutic agent for respiratory distress syndrome, in aqueous monolayers with phospholipids,” Biochemistry, 42, 9446, 2003.
Chang, C.-H., Yu, S.-D., Chuang, T.-K., and Liang, C.-N., “Roles of -globulin in the dynamic interfacial behavior of mixed dipalmitoylphosphatidylcholine/-globulin monolayers at air/liquid interfaces,” J. Colloid Interface Sci., 227, 461, 2000a.
Chang, C.-H., Tseng, S.-C., and Chuang, T.-K., “Inhibitory effects of tyloxapol on the surface activity of albumin at the air/liquid interface,” Colloids Surf. A, 164, 287, 2000b.
Cheng, C.-C., and Chang, C.-H., “Retardation effect of tyloxapol on inactivation of dipalmitoyl phosphatidylcholine surface activity by albumin,” Langmuir, 16, 437, 2000.
Cho, D., and Cornec, M., “Adsorptive behavior of a globular protein with a monoglyceride monolayer spread on the aqueous surface,” Korean J. Chem. Eng., 16, 371, 1999.
Clements, J.A., “Surface tension of lung extracts,” Proc. Soc. Exp. Biol. Med., 95, 190, 1957.
Clements, J.A., “Lung surfactant: a personal perspective,” Ann. Rev. Physiol., 59, 1, 1997.
Creuwels, L.A.J.M., van Golde, L.M.G., and Haagsman, H.P., “The pulmonary surfactant system: biochemical and clinical aspects,” Lung, 175, 1, 1997.
Cruz, A., Worthman, L.A., Serrano, A.G., Casals, C., Keough, K.M.W., and Pérez-Gil, J., “Microstructure and dynamic surface properties of surfactant protein SP-B/dipalmitoylphosphatidylcholine interface films spread from lipid-protein bilayers,” European Biophys. J., 29, 204, 2000.
Defay, R. and Petre, G., “Dynamic surface tension,” Wiley-Liss, New York, 1971.
Fontanges, A.D., Bonte, F., Taupin, C., and Ober, R., “Pressure-area curves of phospholipids monolayers in relation to pulmonary surfactant,” Colloids Surf., 14, 309, 1985.
Fuchimukai, T., Fujiwara, T., Takahashi, A., and Enhorning, G., “Artificial pulmonary surfactant inhibition by proteins,” J. Appl. Physiol., 62, 429, 1987.
Gericke, A., Flach, C.R., and Mendelsohn, R., “Structure and orientation of lung surfactant SP-C and L--dipalmitoylphosphatidylcholine in aqueous monolayers,” Biophys. J., 73, 492, 1997
Goerke, J., “Pulmonary surfactant: functions and molecular composition,” Biochim. Biophys. Acta, 1408, 79, 1998.
Gopal, A., and Lee, K.Y.C., “Morphology and collapse transitions in binary phospholipid monolayers,” J. Phys. Chem. B, 105, 10348, 2001.
Graham, D.E,. and Phillips, M.C., “Proteins at liquid interfaces. I. Kinetics of adsorption and surface denaturation,” J. Colloid Interface Sci., 70, 403, 1979a.
Graham, D.E., and Phillips, M.C., “Proteins at liquid interfaces. II. Adsorption isotherms,” J. Colloid Interface Sci., 70, 415, 1979 b.
Hall, B., Venkitaraman, A.R., Whitsett, J.A., Holm, B.A., and Notter, R.H., “Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants,” Am. Rev. Respir. Disea., 145, 24, 1992
Holm, B.A., Enhorning, G., and Notter, R.H., “A biophysical mechanism by which plasma proteins inhibition lung surfactant activity,” Chem. Phys. Lipids, 49, 49, 1988.
Holm, B.A., “Surfactant inactivation in adult respiratory distress syndrome in Pulmonary surfactant: from molecular biology to clinical practice,” Robertson, B., van Golde, L.M.G., Batenburg, J.J., eds., Chapter 27, Elsevier Science, 1992.
Holm, B.A., Wang, Z., and Notter, R.H., “Multiple mechanism of lung surfactant inhibition,” Pediatric Research 46, 1, 1999.
Jones, M.N., and Chapman, D., “Micelles, monolayer, and biomembranes,” Wiley-Liss, New York, 1995.
Keough, K.M.W., Parsons, C.S.P., Phang, T., and Tweeddale, M.G., “Interactions between plasma proteins and pulmonary surfactant: surface balance studies,” Can. J. Physiol. Pharmacol., 66, 1166, 1988.
Klopfer, K.J., and Vanderlick, T.K., “Isotherms of dipalmitoyl Phosphatidylcholine (DPPC) monolayers: features revealed and features obscured,” J. Colloid Interface Sci., 182, 220, 1996.
Kulovich, M.V., Hallman, M.B., Gluck, L., “The lung profile. I. Nnormal pregnancy,” Am. J. Obstetrics Gynecology, 135, 1, 1, 57, 1979.
Kuo, R.-R., Chang, C.-H., Yang, Y.-M., and Maa, J.-R., “Induced removal of dipalmitoyl phosphatidylcholine by the exclusion of fibrinogen from compressed monolayers at air/liquid interfaces,” J. Colloid Interface Sci., 257, 108, 2003.
Lefevre, T., Subirade, M., “Interaction of beta-lactoglobulin with phospholipids bilayers: a molecular level elucidation as revealed by infarared spectroscopy,” Inter. J. Biological Macromolecules, 28, 59, 2000.
Lewis, J.F., and Veldhuizen, R., “The role of exogenous surfactant in the treatment of acute lung injury,” Annu. Rev. Physiol., 65, 613, 2003.
Lipp, M.M., Lee, K.Y.C., Takamoto, D.Y., Zasadzinski, J.A., and Waring, A..J., “Coexistence of buckled and flat monolayers,” Phys. Rev. Letters , 81, 1650, 1998.
Liu, H., Lu, R.Z., Turcotte, J.G., and Notter, R.H., “Dynamic interfacial properties of surface-excess films of phospholipids and phosphonolipid analogs,” J. Colloid Interface Sci, 167, 378, 1994.
Liu, Y.-L., and Chang, C.-H., “Inhibitory effects of fibrinogen on the dynamic tension-lowering activity of dipalmitoryl phosphatidylcholine dispersions in the presence of tyloxapol,” Colloid Polymer Sci., 280, 683, 2002.
Lu, J.R., and Su, T.J., “Adsorption of serum albumins at the air/water interface,” Langmuir, 15, 6975, 1999.
MacRitchie F. and Alexander, A.E., “Kinetic of adsorption of protein at interface. Part I. The role of bulk diffusion in adsorption,” J. Colloid Sci., 18, 453, 1963a.
MacRitchie F. and Alexander, A.E., “Kinetic of adsorption of protein at interface. Part II. The role of pressure barriers in adsorption,” J. Colloid Sci., 18, 458, 1963b.
MacRitchie F. and Alexander, A.E., “Kinetic of adsorption of protein at interface. Part III. The role of electrical barriers in adsorption,” J. Colloid Sci., 18, 464, 1963c.
MacRitchie, F., “Desorption of proteins from the air/water interface,” J. Colloid Sci., 105, 119, 1985.
Magdassi, S., “Surface activity of proteins,” Magdassi, S., ed.; Chapter 1, Marcel Dekker, 1996.
McClellan, S.J., and Franses, E.I., “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids Surf. B, 28, 63, 2003.
McConlogue, C.W., and Vanderlick, T.K., “A closed look at domain formation in DPPC monolayer,” Langmuir, 13, 7158, 1997
McConlogu, C.W., and Vanderlick, T.K., “Molecular determinants of lipid domain shape,” Langmuir, 15, 234, 1999.
Mendelsohn, R., Brauner, J.W., and Gericke, A., “External infrared reflection absorption spectrometry of monolayer films at the air-water interface,” Annu. Rev. Phys. Chem., 46, 305, 1995
Miller, R., Fainerman, V.B., Makievski, A.V., Krägel, J., Grigoriev, D.O., Kazakov, V.N., and Sinyachenko, O.V., “Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface,” Adv. Colloid Interface Sci., 86, 39, 2000.
Miller, N.J., Postle, A.D., Orgeig, S., Koster, G., and Daniels, C.B., “The composition of pulmonary surfactant from diving mammals,” Respir. Physiol. Neurobiol., 152, 152, 2006.
Mohwald, H., “Phospholipid and phospholipid-protein monolaters at the air/water interface,” Annural Review of Physical Chemistry 41, 441, 1990.
Myers, D., “Surfaces, interfaces, and colloids: principles and applications,” Wiley-VCH, New York, 1999.
Nag, K., Pérez-Gil, J., Ruano, M.L.F., Worthman, L.A.D., Stewart, J., Casals, C., and Keough, K.M.W., “Phase transitions in films of lung surfactant at the air-water interface,” Biophys. J., 74, 2983, 1998
Nag, K., Munro, J.G., Inchley, K., Schürch, S., Petersen, N.O., and Possmayer, F., “SP-B refining of pulmonary surfactant phospholipid films,” Am. J. Physiol. Lung Cell. Mol. Physiol., 277, 1179, 1999.
Nag, K., “Lung surfactants function and disorder,” Taylor & Francis, Boca Raton, 2005.
Nakahara, H., Lee, S., Sugihara, G., Chang, C.-H., and Shibata, O., “Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with Surfacten (Surfactant TA),” Langmuir, 24, 3370, 2008.
Notter, R.H. and Finkelstein, J.N. “Pulmonary surfactant: an interdisciplinary approach,” J. Applied Phys., 57, 1613, 1984.
Notter, R.H., “Lung surfactants: basic cience and clinical applications,” Marcel Dekker, New York, 2000.
Pastrana-Rios, B., Flach, C.R., Brauner, J.W., Mautone, A.J., and Mendelsohn, R., “A direct test of the “squeeze-out” hypothesis of lung surfactant function external reflection FT-IR at the air/water interface,” Biochemistry, 33, 5121, 1994.
Pastrana-Rios, B., Taneva, S., Keough, K.M.W., Mautone, A.J., and Mendelsohn, R., “External reflection absorption infrared spectroscopy study of lung surfactant proteins SP-B and SP-C in phospholipid monolayers at the air/water interface,” Biophys. J., 69, 2531, 1995.
Pérez-Gil, J., and Keough, K.M.W., “Interfacial properties of surfactant proteins,” Biochim. Biophys. Acta, 1408, 203, 1998.
Polverini, E., Arisi, S., Cavatorta, P., Berzina, T., Cristofolini, L., Fasano, A., Riccio, P., and Fontana, M.P., “Interaction of myelin basic protein with phospholipid monolayers: mechanism of protein penetration,” Langmuir, 19, 872, 2003.
Putnam, F.W., “The plasma proteins: structure, function, and genetic control, academic press,” New York, 1975.
Rodriguez-Capote, K., Nag, K., Schürch, S., and Possmayer, F., “Surfactant protein interactions with neutral and acidic phospholipid films,” Am. J. Physiol. Lung Cell. Mol. Physiol., 281, 231, 2001.
Seeger, W., Stöhr, G., Wolf, H.R.D., and Neuhof, H., “Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer,” J. Applied Phys., 58, 326, 1985.
Serrano, A.G., and Pérez-Gil, J., “Protein-lipid interactions and surface activity in the pulmonary surfactant system,” Chem. Phys. Lipids, 141, 105, 2006.
Tabak, S.A., and Notter, R.H., “Effect of plasma proteins on the dynamic -A characteristic of saturated phospholipids films,” J. Colloid
Interface Sci., 293, 1977.
Taeusch, H.W., “Treatment of acute (adult) respiratory distress syndrome,” Biology Neonate, 77, 2, 2000.
Takamoto, D.Y., Lipp, M.M., von Nahmen, A., Lee, K.Y.C., Waring, A.J., and Zasadzinski, J.A., “Interaction of lung surfactant proteins with anionic phospholipids,” Biophys. J., 81, 153, 2001.
Taneva, S.G., and Keough, K.M.W., “Dynamic surface properties of pulmonary surfactant proteins SP-B and SP-C and their mixtures with dipalmitoylphosphatidylcholine,” Biochemistry, 33, 14660, 1994.
Tripp, B.C., Magda, J.J., and Andrade, J.D., “Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics,” J. Colloid Interface Sci., 173, 16, 1995.
Veldhuizen, R., Nag, K., Orgeig, S., and Possmayer, F., “The role of lipids in pulmonary surfactant,” Biochim. Biophys. Acta, 1408, 90, 1998.
Veldhuizen, E.J.A., and Haagsman, H.P., “Role of pulmonary surfactant components in surface film formation and dynamics,” Biochim. Biophys. Acta, 1467, 255, 2000.
Von Nahmen, A., Schenk, M., Sieber, M., and Amrein, M., “The structure of a model pulmonary surfactant as revealed by scanning force microscopy,” Biophys. J., 72, 463, 1997.
Wang, Z., Hall, S.B., and Notter, R.H., “Dynamic surface activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids,” J. Lipid Res., 36, 1283, 1995
Wang, L., Cai, P., Galla, H.J., He, H., Flach, C.R., and Mendelsohn, R., “Monolayer-multilayer transitions in a lung surfactant model: IR reflection-absorption spectroscopy and atomic force microscopy,” Eur. Biophys. J., 34, 243, 2005.
Warriner, H.E., Ding, J., Waring, A.J., and Zasadzinski, J.A., “A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants,” Biophys. J., 82, 835, 2002.
Wegman, M.E., “Annual summary of vital statistics 1990,” Pediatrics, 88, 1081, 1991.
Wen, X., and Franses, E.I., “Role of subsurface particulates on the dynamic adsorption of dipalmitoylphosphatidylcholine at the air/water interface” Langmuir, 16, 3149, 2000.
Wen, X., and Franses, E.I., “Adsorption of bovine serum albumin at the air/water interface and its effect on the formation of DPPC surface film,” Colloids Surf. A, 190, 319, 2001.
Wustneck, R., Perez-Gil, J., Wustneck, N., Cruz, A., Fainerman, V.B., and Pison, U., “Interfacial properties of pulmonary surfactant layers,” Adv. Colloid Interface Sci., 117, 33, 2005.
Ybert, C., Lu, W., Moller, G., and Knobler, C.M., “Collapse of a monolayer by three mechanisms,” J. Phys. Chem. B, 106, 2004, 2002.
Yin, C.-L., and Chang, C.-H., “Infrared spectroscopy analysis of mixed DPPC/fibrinogen layer behavior at the air/liquid interface under a continuous compression-expansion condition,” Langmuir, 22, 6629, 2006.
Zasadzinski, J.A., Ding, J., Warriner, H.E., Bringezu, F., and Waring, A.J., “The physics and physiology of lung surfactants,” Curr. Opin. Colloid Interface Sci., 6, 506, 2001.
Zhao, J., Vollhardt, D., Brezesinski, G., Siegel, S., Wu, J., Li, J.B., and Miller, R., “Effect of protein penetration into phospholipid monolayers: morphology and structure,” Colloids Surf. A, 171, 175, 2000.
Zhang, H., Wang, X., Cui, G., and Li, J., “Stability investigation of the mixed DPPC/protein monolayer at the air-water interface,” Colloids Surf. A, 175, 77, 2000.
Zuo, Y.Y., Veldhuizen, R.A.W., Neumann, A.W., Petersen, N.O., and Possmayer, F., “Current perspectives in pulmonary surfactant-inhibition, enhancement and evaluation,” Biochim. Biophys. Acta, 1778, 1947, 2008.
李寶琴,以反射吸收式紅外光譜分析技術探討氣/液界面上DPPC/Albumin混合單分子層行為的研究,國立成功大學化學工程學系碩士論文,2004。
陳可潔,“以螢光顯微鏡分析法探討氣/液界面上磷脂質/血漿蛋白質混合分子層的行為”,國立成功大學化學工程學系碩士論文,2009 a。
陳泓宇,“以紅外光譜技術探討牛血漿白蛋白對氣/液界面上混合脂質單分子層行為的影響”,國立成功大學化學工程學系碩士論文,2009 b。
鄭靈珍,“以Brewster Angle Microscopy 探討氣/液界面上DPPC/Albumin混合單分子層行為”,國立成功大學化學工程學系碩士論文,2003。
楊子儀,“以螢光顯微鏡法探討牛血漿白蛋白對氣/液界面上混合雙電性/負電性磷脂質單分子層行為的影響”,國立成功大學化學工程學系碩士論文,2011。