簡易檢索 / 詳目顯示

研究生: 王宏益
Wang, Hung-Yi
論文名稱: 貼附壓電材料樑之電能擷取電路設計
Design of Energy Harvesting Circuit on Timoshenko Beam with Surface Mounted Piezoelectric Material
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 壓電樑有限元素法能量擷取器
外文關鍵詞: Piezoelectric layers, Cantilevered beam, Finite element technique, energy harvesting circuit
相關次數: 點閱:138下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為探討一根上下表面貼有壓電材料之Timoshenko懸臂型樑模型,先以有限元素法為基礎,分析這個壓電懸臂型樑之動態行為,再利用Newmark法計算出此樑承受外力作用後所產生之位移及壓電電壓。此外設計一組能量擷取電路,將壓電片產生之電能有效轉換成可用電能,在供給儲存設備或負載使用。
    鋁樑的第二跨距表面貼附上、下壓電片,由靜態平衡方程式得到單位有限元素之解, 再計算單位元素的應變能與動能,由此分別得到單位元素的勁度矩陣和質量矩陣,接著應用元素的堆疊於探討整體樑的自然頻率以及動態響應與感應電壓。
    當懸臂樑承受到外力後,壓電片得到感應電壓,我們設計一個電能擷取電路,經過整流、濾波、穩壓等步驟後得到直流電元,並將電能儲存,也探討不同電容的充電效能。

    In this thesis a pair of piezoelectric layers mounted on the Timoshenko beam model is probed. First, the finite element technique is taken to analyze the dynamic behavior of cantilevered beam. Then the Newmark’s method is adopted to calculate the displacement and the induced voltage by the external force. Afterward, an energy harvesting circuit is designed to store the electric current come from the piezoelectric layers, the induced voltage is converted into the current and supplied to the device or load. The finite element technique is derived by solving the system of equations of static equilibrium of the entre beam. The strain energy and the dynamic energy of the entire beam are then calculated. The induced voltage will be obtained from piezoelectric material after the cantilever beam is subjected to the external forces. But it can’t be directly stored, an energy harvesting circuit is used to convert the voltage. After the process of rectification, filtering, voltage stabilizer and other steps, the output direct current (DC) can be supplied to energy storage. Furthermore, many different kinds of capacitor charging performance are investigated also.

    目錄 摘要 I Extend Abstract II 目錄 VII 圖目錄 XI 第一章緒論 1 1-1 研究動機 1 1-3 文獻回顧 5 1-4 論文架構 8 第二章壓電複合層樑之運動方程式 9 2-1複合層TIMOSHENKO樑之說明與模型 9 2-1-1 壓電材料樑之基本說明 9 2-1-2 模型之位移函數 10 2-2線性壓電理論 13 2-3壓電三明治樑的應變能、電能、動能 15 2-4整體壓電三明治樑的運動方程式 17 2-5邊界條件 20 2-6壓電複合層樑之有限元素法分析 22 2-7壓電三明治樑的元素堆疊與自然頻率 30 2-8壓電複合層樑的感應電壓分析 33 FIG.2.9感應電壓輸出示意圖 34 第三章 壓電系統之能量擷取電路設計 35 3-1 電路模型 35 3-2 整流電路 37 3-2-1 半波形整流電路(Half-wave-rectifier Circuit) 37 3-2-2 全波形整流電路(Full-wave-rectifier Circuit) 38 3-3 濾波電路 42 3-4 穩壓電路 45 3-5 阻抗匹配電路及儲能負載 47 3-6基本壓電擷取電路 48 3-6-1 參考論文之壓電能量擷取電路 49 第四章數據模擬與分析 51 4-1 材料設定與參數 51 4-1-1 材料設定 51 4-2本研究擷取能量之電路設計 52 4-2-1本研究之施力方式解析 54 4-3模擬結果與分析 55 4-3-1在理想情況下的模擬與分析 56 4-3-2壓電材料對於尾端位移之影響 57 4-3-3在不同時間下施力的模擬與分析 62 4-3-3-1 分別在0、4、7秒施一垂直力 67 第五章結論與未來展望 72 5-1結論 72 5-2 未來展望與建議 74 參考文獻 75 附錄一 78 附錄二 81 附錄三 85 附錄四 86 附錄五 87 附錄六 89

    參考文獻
    1. Mason, W. P., “Piezoelectricity, Its History and Applications”, J. Acoust. Soc. Am., Vol. 70, No. 6, pp. 1561~1566, December, 1981.
    2. Curie, P., “Radioactive Substances, Especially Radium,” Nobel Lecture, June 6, 1905.
    3. Crawly, E. F. and Luis, J., “Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA Journal, Vol.25, No.10, pp.1375-1385, 1987.
    4. C. Q. Chen, X. M. Wang and Y. P. Shen, “Finite Element Approach of Vibration Control Using Self-sensing Piezoelectric Actuators,” Computers and Structures, Vol. 60, No. 3, pp. 502-512, 1996.
    5. H. A. Kunkel, S. Locke, and B. Pikeroen, “Finite-Element Analysis of Vibrational Modes in Piezoelectric Ceramic Disks,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 37, pp. 316–328, July 1990.
    6. D. H. Robbins and J. N. Reddy, “Analysis of Piezoelectrically Actuated Beams Using a Layer-wise Displacement Theory,”Computers and Structures, Vol. 41, No. 2, pp. 265-279, 1991.
    7. X. D. Zhang and C. T. Sun, "Formulation of an Adaptive Sandwich Beam,” Smart Materials and Structures, Vol. 5, No. 6, pp. 814-823, 1996.
    8. Damjanovic, Dragan. "Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics." Reports on Progress in Physics 61.9 (1998): 1267.
    9. J. G. Smits and A. Ballato, “Dynamic Admittance Matrix of Cantilever Bimorphs,”Journal of Microelectromechanical System, Vol. 3, No. 3, pp. 105-112, 1994.
    10. J. G. Smits, “Design consideration of a Piezoelectric-on-silicon Microrobot,” Sensor and Actuators, A35, pp. 129-135, 1992.
    11. E. F. Crawley, and J. de. Luis,“ Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA Journal, Vol. 25, No. 10, pp. 1375-1385, 1987.
    12. Rogacheva, N. N., “Theory of Piezoelectric Shells and Plates”, 1st ed., CRC Press, USA, 1994.
    13. Yang, J. S. and Batra, R. C., “Free Vibrations of a Piezoelectric Body,” Journal of Elasticity, 34(3), pp. 239-254, 1994.
    14. M. C. Ray, K. M. Rao, and B. Sanmanta,“Exact Solution for Static Analysis of An Intelligent Structure under Cylindrical Bending,”Computers and Structures, Vol. 47, No. 6, pp. 1031-1042, 1993.
    15. J. G. Smits, W. S. Choi, and A. Ballato,“Resonance and Antiresonance of Symmetric and Asymmetric Piezoelectric Flexors,”Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, No. 2, pp. 250-258, 1997.
    16. G. P. Dude, S. Kapuria, and P. C. Dumir, “Exact PiezothermoelasticSolution of Simply-supported Orthotropic Flat Panel in Cylindrical Bending,” Journal of Intelligent Material Systems and Structures, Vol. 38, No. 11, pp.1161-1177, 1996.
    17. H. S. Tzou and G. C. Wang, “Distributed Structural Dynamics Control of Flexible Manipulators-I. Structural Dynamics and Viscoelastic Actuator,” Computers and Structures, Vol.35, pp. 669-677, 1990.
    18. Angela Triplett and D. Dane Quinn, “The Effect of Nonlinear Piezoelectric Coupling on Vibration-based Energy Harvesting,” Journal of Intelligent Material Systems and Structures, Vol. 20, No. 16, November, 2009
    19. Q. Wang, and S. T. Quek, “A Model for the Analysis of Beams with Embedded Piezoelectric Layer,”Journalof Intelligent Material System and Structures,Vol. 13, pp.61-70,2002.
    20. H. A. Sodano, D. J. Inman and G. Park, “A Review of Power Harvesting from Vibration Using Piezoelectric Materials,” The Shock and Vibration Digest, Vol. 36, No. 3, pp. 197-205, May. 2004.
    21. H. Shen, J. Qiu, H. Ji, K. Zhu, M. Balsi, I. Giorgio, and F. dell’Isola,“A Low-power Circuit for Piezoelectric Vibration Control by Synchronized Switching on Voltage Sources,” Sensors and Actuators A: Physical, 161(1), 245-255,Jul. 2010.
    22. Kong, N., & Ha, D. S. (2012),“ Low-power Design of ASelf-powered Piezoelectric Energy Harvesting System with Maximum Power Point Tracking,” Power Electronics, IEEE Transactions on, 27(5), 2298-2308.
    23. 李聰勝, Dynamics Analysis of Timoshenko Beam with Piezoelectric Material under Force Loading and Voltage Coupling,國立成功大學工程科學系碩士班碩士論文, July, 2013.
    24. 王綵綾, Study of the Coupling Effects of Force and Voltage on Timoshenko Beam with One Side Surface Mounted Piezoelectric Material,國立成功大學碩士班碩士論文,July, 2014.
    25. 陳玠融, Analysis of Energy Harvesting Circuit on a Sandwich Beam Surface Mounted with Piezoelectric Material,國立成功大學碩士論文,July,2015.

    下載圖示 校內:2019-02-18公開
    校外:2021-02-18公開
    QR CODE