| 研究生: |
林銘福 Lin, Ming-Fu |
|---|---|
| 論文名稱: |
橢圓刃球端銑刀與階梯端銑刀之設計與分析 Design and Analysis of Elliptical Ball-End-Mill and Step-End-Mill |
| 指導教授: |
林昌進
Lin, Psang-Dain |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | 橢圓刃 、端銑刀 、階梯 |
| 外文關鍵詞: | elliptical cutting edge, end-mill, step |
| 相關次數: | 點閱:77 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中 文 摘 要
端銑刀是機械切削加工最常用的一種刀具,其幾何形狀深深地影響著切削性能與工件品質,尤其在曲面加工方面,螺旋槽式球端銑刀扮演極重要之角色。然而螺旋槽式球端銑刀之幾何形狀非常複雜,研磨製造與重新磨銳需要專門技術工人研磨與高精度之研磨工具機為之。為了克服這些缺點遂有日本Aoyama等人提出無螺旋槽幾何外型簡單之橢圓刃球端銑刀之技術文獻,本文第三章與第四章則在建立此型刀具的數學模式。此型刀具的特點在於僅需兩道研磨步驟就可研磨出此刀具,而且用鈍的刀刃僅需一個研磨步驟就可以產生新的刀刃。吾人依據國際標準(ISO)定義刀具角度,並運用齊次轉換矩陣建立了此型刀具的刀刃曲線、斜角、隙角及楔角之數學公式,最後使用CNC工具機實際研磨此型刀具,並量測研磨後之刀具,以驗證這些公式。
本文的第五章以微分幾何做為數學工具,建立了非等截面螺旋刀具之幾何數學模式,並以階梯端銑刀作例子推導其母線、刀刃曲線及刀具角度之數學公式。第六章則採用RPY矩陣以使得在空間中的研磨輪可適應各種可能的研磨方位,建構了研磨階梯端銑刀之位姿矩陣,接著第七章建立瑞士Ewag六軸CNC工具磨床研磨階梯端銑刀之功能函數矩陣, 聯立第六章之位姿矩陣與第七章之功能函數矩陣導出NC方程式。
ABSTRACT
End mills are widely used in various machining. Its geometry of cutting edges have critical effects on the milling processes and product qualities. Especially, helical ball-end-mills are in the widest use to create a variety of curved surfaces. However, the geometry of a helix ball-end-mill is complicated. Therefore, its manufacturing or re-sharpening usually needs high-skilled technician and precision tool-grinding machine. To overcome this difficulty, an unique geometry of ball-end-mill without helix flute is introduced by Aoyama, et. al. and modeled theoretically in this paper. It takes only one simple step for grinding or re-sharpening. Its elliptical cutting edges enable the end mill to meet the demanding requirements in terms of easy manufacturing, thereby enabling high-accuracy and high-performance cutting for machine parts. Its rake angle, clearance angle, wedge angle and cutting edge angle are then investigated according to International Standard Organization (ISO) by using homogeneous transformation matrices. To validate the developed algorithms, an elliptic ball-end-mill is designed and produced on an universal tool grinding machine. This design eliminates the needs of precision tool-grinding machine in manufacturing or/and re-sharpening processes, and enables excellent tool accuracy to be attained.
In section IV of the study, a geometric shape of the step ball end mill is established by using differential geometric method; section V covers the normal vector of the face and flank of the cutting curve of the step ball end mill. In section IV, the required position and posture of the wheel for grinding the face and flank of the mill is determined, and since the cutting tools shape discussed in this article is from a unique generatrix, it takes the transformation of RPY matrix to get the required degrees of freedom of the position and posture as well as the matrix of the grinding wheel and the step ball end mill. Based on the matrix of the position and shape of the end mill deduced in section VI, it is concluded that the six-axis CNC machine tool of Ewag Corporation, Switzerland, is used to grind the step ball end mill. The main reference source of mathematical model of such six-axis CNC machine tool is the article uses the results to infer the NC program of mills with different forms of generatrix end. The step ball end mill is taken as an example.
1. Aoyama, H., Kishinami, T., “Development of Elliptic Ball-End-Mill”, Bull Japan Soc. of Prec. Eng., Vol. 20, No.4, pp.291-293(1986)
2. Ismsail L., Steven Y. Liang, “Modeling of Ball-End Milling Force With Cutter Axis Inclination”, J. of Manufacturing Science and Eng. Trans. of the ASME, Feb. 2000, Vol. 122/3
3. P. Lee, Y. Altintas, “Prediction of Ball-End Milling Forces From Orthogonal Cutting Data ”, Int. J. Mach. Tool Manufact. Vol. 36, No. 9, pp. 1059-1072, 1996
4. S. T. Chiang, C. M. Tsai, A. C. Lee, “Analysis of cutting force in ball-end milling”, Journal of Material Processing Technology ,47, pp231-249 (1995)
5. G. Boothroyd, Fundamentals of Metal Machining and Machine Tool, McGraw-Hill Book Company(1975)
6. T. Radhakrishnan, R. K. Kawlra and S. M. Wu, "A Mathematical Model of the Grinding Wheel Profile Required for A Specific Twist Drill Flute”, International Journal of machine Tool Design & Research, Vol. 22/No.4
/1982, pp239-251.
7. J. Agullo-Batlle, S. Cardona-Foix and C. Vinas-sanz, "On the Design of Milling Cutters or Grinding Wheel For Twist Drill Manufacture. A CAD Approach”, Mechanical Design & Research Vol. 17, pp315-318.
8. K. F. Ehmann, "Grinding Wheel Profile Definition for the Manufacture of Drill Flutes”, Annales of the CIRP Vol.39/1/1990, pp153-156.
9. S. Kaldor , Ada Mod Rafale and D. Messinger, "On the CAD of Profiles for Cutters and Helical Flutes - Geometrical Aspects”, Annals of the CIRP Vol.37/1/1988 , pp53-56.
10. R. A. Etheridge, "An Analysis of the Interference Produced When Milling A Helical Slot with Disk Type Cutters”, International Journal of Machine Tool Design and Research, Vol. 10/1970, pp143-157.
11. S. K. Kang, K. F. Ehmann and C. Lin, "A CAD Approach to Helical Groove Machining. Part 1: Mathematical Modal and Modal Solution”, International Journal of Machine Tool Design and Research, Vol. 36/No. 1/1996, pp141-153.
12. S. K. Kang, K. F. Ehmann and C. Lin, "A CAD Approach to Helical Groove Machining. Part 2: Numerical Evaluation and Sensitivity Analysis”, International Journal of Machine Tool Design and Research, Vol. 37/No. 1/1997, pp101-117.
13. Sheth, D. S. and Malkin, S., “CAD/CAM for Geometry and Process Analysis of Helical Flute Machining,” Ann. CIRP vol.39, NO.1, 1990, pp.129-132.
14. Chyan, H. C. and K. F. Ehmann, “Tapered-Web Helical Groove Machining”, Proc. I-Mech., 1999, vol.213, partB, pp779-785.
15. Kataev, A. V., “CAD of Tool with Complex Forming Face,” Soviet Engineering, 1989,9(7):22-28.
16. Rodin, P. “Fundamentals of Surface Formation by Cutting”, Kiev, Vishta shkola, 1977.
17. Rodin, P. “Cutting Tools. Graphical Calculations and Laboratory Experiments,” Kiev, Tehnika, 1966.
18. Ivanov, V. and Nankov, G. “Profiling of Tools for Helical Surfaces Forming,” Scientific Works of the University of Roussse, vol.XXXV, SERY 1, 1994.
19. Belyaev, S. and Gordev, B. “Automated Calculation of Disc Tool Profile for Helical Surface,” J. Stanki I. Instrument,N6,1982.
20. Litvin, F. L. and Krylov, N., N., “Generation of tooth Surface by Two Parameter Enveloping,” Mechanism and Machin Theory, Vol.10 pp.365-373,1975.
21. Litvin, F. L. and Y. Gutman, “Methods of Synthesis and Analysis for Hypoid Gear Driver of Formate and Helixform part 1. Analysis for Machine Settings for member Gear Manufacture of Formate and Helixform Hypooid Gear ” ASME Trans. J. Manufacture Design”, vol. 103, NO. 1, pp.83-87,1981.
22. Litvin, F. L. and Y. Gutman, “Methods of Synthesis and Analysis for Hypoid Gear Driver of Formate and Helixform part 2. Machine Settings Calculations for the Pinions of member Gear Manufacture of Formate and Helixform Hypooid Gear ” ASME Trans. J. Manufacture Design”, vol. 103, NO. 1, pp.88-101,1981.
23. Litvin, F. L., Y. Zhang, M. Lundy, and C. Heine, 1988, “Determination of Settings of aTilted Head Cutter for Generation of Hypoid and Spiral Bevel Gears,” ASME Trans. J. Manufacture Design”, vol. 110, NO. 1, pp.495-500,1988.
24. Litvin, F. L., Chaing W. S., Laudy M. and Tsung, W. J., “Design of Pitch Cones for Face-Hobbed Hypoid Gears,” ASME Trans. J. Manufacture Design”, vol. 112, pp.413-418, 1990.
25. Litvin, F. L., Y. Zhang, Wang, J., C. Bossler, Jr. R. B. and Chen, Y. D. “Design and Geometry of Face-Gear Drives”, ASME Trans. J. Manufacture Design”, vol. 114, pp.642-647, 1992.
26.Litvin, F. L., J. Lu “Computerized design and generation of double circle arc helical gears with low transmission errors”, Computer methods in applied mechanics and engineering, 127, pp57-86, 1995.
27. Litvin, F. L., Aoyong Peng, Anngwo Wang, “Limitation of gear tooth surface by envelopes to contact lines and edge of regression ”, Mechanism and Machine Theorey, 34, pp889-902, 1999.
28. Litvin, F. L., I. H. Seol, “Computerized determination of geer tooth surface as envelope to two parameter family of surface”, Comput. Methods Appl. Mech. Engrg., 138, pp213-225, 1996.
29. I. H. Seol, Litvin, F. L., “Computerized design, generation and simulation of meshing and contact of worm gear drives with improved geometry”, Comput. Methods Appl. Mech. Engrg., 138, pp73-103, 1996.
30. Litvin, F. L., Jain Lu, D. P. Townsend, M. Howkins, “Computerized simulation of meshing of conventional helical involute gears and modification of geometry”, Mechanism and Machine Theorey, 34, pp123-147, 1999.
31. Litvin, F. L., M. De Donno, “Computerized design and generation of modified spiroid worm gear drive with low transmission errors and stabilized bearing contact”, Comput. Methods Appl. Mech. Engrg., 162, pp183-201, 1998.
32. Litvin, F. L., A. G. Wang, R. F. Handschuh, “Computerized generation and simulation of meshing and contact of spiral bevel gears with improved geometry”, Comput. Methods Appl. Mech. Engrg., 158, pp.35-64, 1998.
33. Tamura H. and Sakai T. “Point Contact Hourglass Worm Gearing with Little Relative Curvature”, Proceedings of 1981 Internationl Symposium on Gearing and power Transmissions, vol.1, pp.139-143, 1981.
34. Dhande S. G., Bhadoria B. S. and Chakraborty J., “A Unified Approach to the Analytical Design of three Die. Cam Mechanisms”, ASME Trans. J. Engineering Industry”, vol. 97B, pp.327-333, 1975.
35. Dhande S. G. and Chakraborty J., “Curvature Analysis of Surface in Heigher pair Contact Part I: An Analytical Investigation”, ASME Trans. J. Engineering Industry”, vol. 98, pp.397-402, 1976.
36. Dhande S. G. and Chakraborty J., “Curvature Analysis of Surface in Heigher pair Contact Part II: Application to Spatial Cam mechanisms”, ASME Trans. J. Engineering Industry”, vol. 98, pp.403-409, 1976.
37. Backhous C. J. and Jones J. R. “Envelope Theory Applied to Globoidial Cam Surface Geometry”, I. Mech. Part C: J. of Mech. Engi. Science, vol. 204, pp409-416, 1990.
38. Borisov V. D. “Computer Aided Design of cylindrical cames”, Soviet Engineering Research, vol.4, no.8, pp44-47, 1984.
39. Pasng Dain Lin, Ming Fa Lee, “NC Data generation for 4-Axis machine Tools equipped with rotary angle head attachments to produce variable pitch screws”, I. J. of machine tools and manufacture, 37, pp341-353, 1997.
40. Pasng Dain Lin, Ing Jyh Tsai, “The Machining and on-line measurement of spatial cams on 5-Axis Machine Tools” I. J. of machine tools and manufacture, 36, pp89-101, 1996.
41. Pasng Dain Lin, Ming Fa Lee, “Applications of D-H Notation in Machining and On Line Measurement of Roller-Gear Cams on 5-Axis Machine Tools”, J. of Manufacturing Science ang Engineering, vol.119, pp393-401, 1997.
42. Pasng Dain Lin and Jung-Fa Hsieh, “Dimension Inspection of Spatial Cams by CNC Coordinate Measuring Machines”, J. of Manufacturing Science ang Engineering, vol.122, pp149-157, 2000.
43. Jung-Fa Hsieh, Pasng Dain Lin “Production of multifluted drill on six-axis CNC tool-grinding machine”, I. J. of machine tools and manufacture, 43, pp1117-1127, 2003.
44. 謝榮發,〝多槽鑽頭設計與研磨〞,國立成功大學機械工程學系博士
論文,民國91年。
45. 曾乾生,〝Ewag 六軸CNC工具磨床之研究〞,國立成功大學機械工程學系碩士論文,民國91年。
46. P. D .Lin and M. F. Lin “Geometric Modeling of Elliptic Ball-End Mill” P. of I. Mech., Part B, Journal of Engineering manufaacture2005/Vol. 219, pp87-97.
47. Luther Pfahler Eisenhart, “A Treatise on the Differential Geometry of Curves and Surfaces”, New York :Dover Publications,1960.
48. 廖德潭, ”雙照相機立體成像系統的建模與分析”, 國立成功大學機械工程學系博士論文,民國91年。
49. 唐余勇,陳朝光,王松,”等螺旋角銑刀二軸連動數值控制加工方案及其幾何模型”,哈爾濱工業大學學報,1996,28(5),PP.5-7。
50. 日本專利公報(Application number:56-126513)。