簡易檢索 / 詳目顯示

研究生: 陳軒立
Chen, Xuan-Li
論文名稱: 摩擦型滑動支承之摩擦係數識別研究
Identification of Friction Coefficients of Friction-type Sliding Isolators
指導教授: 朱世禹
Chu, Shih-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 155
中文關鍵詞: 摩擦型滑動支承摩擦係數啟動地震力殘餘位移油壓千斤頂
外文關鍵詞: Friction-type Sliding Isolators, Coefficient of Friction, Activation Seismic Force, Residual Displacement, Hydraulic Jack
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震為重大天然災害之一,近年來世界上有許多地震陸續發生。造成許多建築物破壞,人命及財產皆受到重大損失。台灣地處位於歐亞大陸板塊與菲律賓海板塊的交界處,為地震頻繁的地區之一,因此對於地震的防範亦為重要課題。因此,隔震技術因應而生。而摩擦型滑動支承為現今結構物常採用之隔震元件,在經許多學者研究下,已經有實際的應用案例。
    採用摩擦型滑動支承作為隔震元件,其摩擦係數為設計評估階段的重要參數。根據過去的元件動態試驗,得知摩擦係數隨速度變動而變化,高速度時摩擦係數呈現穩定且為最大值。但在速度極小時卻不易觀察,摩擦係數變動幅度劇烈,呈現不穩定的狀況。導致在預估啟動地震力之困難。本文針對此部分進行實驗研究。
    本文實驗為應用安裝摩擦型滑動支承之隔震平台,並以手動油壓千斤頂,於每次加壓提供油壓推力進行隔震平台之側推實驗,藉此得到摩擦型滑動支承於觸發時之起始力量,進而識別最大靜摩擦係數,以增加預估啟動地震力之準確性,彌補動態元件測試之不足。經由本文實驗識別之最大靜摩擦係數,亦可進一步推估隔震平台於每次作用後之殘餘位移量。
    根據本文實驗研究之評估結果,建議在推估滑動隔震系統之啟動地震力時,摩擦材料選用乙烯龍且隔震元件為摩擦型滑動支承時,可將高速度時之動摩擦係數放大約1.5倍,為較保守之最大靜摩擦係數預估值。

    While using friction-type sliding isolators, the friction coefficient is an important issue. From the dynamic experiment of the previous study, it can be seen that the friction coefficient changes due to speed changes. At high speed, the friction coefficient is stable and reaches its maximum value. However, it is not easy to observe the activation state of friction type sliding bearing, and the friction coefficient fluctuates sharply at that moment, showing an unstable situation. This results in an inaccurate estimation of the activation seismic force. Therefore, this study conducted experimental research on this matter.
    The experimental specimen in this study is a seismic isolated floor using friction-type sliding isolators. It uses the hydraulic thrust provided by the hydraulic jack to manually push the seismic isolated floor to obtain the forces of the friction-type sliding isolators at the time of activation or sliding states. Then, identify the maximum static friction coefficient to increase the accuracy of predicting the activation seismic force and make up for the lack of activation information on ordinary dynamic component testing. The maximum static friction coefficient identified through the experiments in this study can further estimate the residual displacement of the seismic isolated platform after each pushing test.
    By adopting the friction-type sliding bearings studied in the study, the maximum static friction coefficient can be estimated conservative by about 1.5 times of its dynamic friction coefficient at high speed.

    摘要 I 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XV 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 本文內容 5 第2章 摩擦型滑動支承元件理論 6 2.1 元件構造介紹 6 2.2 力學特性 8 2.3 滑動曲面函數 11 第3章 隔震平台實驗研究設施 19 3.1 前言 19 3.2 實驗試體與設備介紹 19 3.2.1 實驗隔震平台 19 3.2.2 實驗量測系統 19 3.2.3 實驗側向推力設備 20 3.2.4 感測器訊號線 20 3.2.5 實驗試體組裝介紹 22 3.3 數據擷取系統 23 3.3.1 QuantumX MX1615B應變橋路放大器 23 3.3.2 Catman Easy 資料擷取軟體 24 第4章 實驗規劃與分析 48 4.1 實驗規劃 48 4.2 實驗方法 48 4.3 實驗訊號分析與探討 49 4.3.1 靜摩擦係數分析 49 4.3.2 靜摩擦係數分析結果探討 51 4.3.3 最大靜摩擦係數分析 52 4.3.4 最大靜摩擦係數結果之探討 52 4.3.5 曲盤損壞面探討 53 第5章 回復位移分析探討與動態實驗之摩擦係數比較 102 5.1 摩擦型滑動支承回復位移分析 102 5.2 摩擦型滑動支承回復位移探討 102 5.3 與動態實驗之摩擦係數比較 103 第6章 結論與建議 127 6.1 結論 127 6.2 建議 128 參考文獻 129 附錄A 實驗原始訊號圖 135

    [1]Asher, J. W., Hoskere, S. N., Ewing, R. D., Van Volkinburg, D. R., Mayes, R. L., & Button, M. Seismic performance of the base isolated USC University hospital in the 1994 Northridge Earthquake. ASME-PUBLICATIONS-PVP, 319, 147-154. (1995).
    [2]Celebi, M. Successful performance of a base‐isolated hospital building during the 17 January 1994 Northridge earthquake. The structural design of tall buildings, 5(2), 95-109. (1996).
    [3]Constantinou, M., Mokha, A., & Reinhorn, A. Teflon bearings in base isolation II. Modeling. Journal of structural engineering New York, N.Y., 116(2), 455-474. (1990).
    [4]Fujita, T. Seismic isolation of civil buildings in Japan. Progress in Structural Engineering and Materials, 1(3), 295-300. (1998).
    [5]Iemura, H., Taghikhany, T., & Jain, S. K. Optimum design of resilient sliding isolation system for seismic protection of equipments. Bulletin of Earthquake Engineering, 5(1), 85-103. (2007).
    [6]Kelly, J. Seismic isolation of civil buildings in the USA. Progress in Structural Engineering and Materials, 1(3), 279-285. (1998).
    [7]Lu, L.-Y., Lee, T.-Y., & Yeh, S.-W. Theory and experimental study for sliding isolators with variable curvature. Earthquake Engineering and Structural Dynamics, 40(14), 1609-1627. (2011).
    [8]Lu, L.-Y., Lee, T.-Y., Juang, S.-Y., & Yeh, S.-W. Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study. Engineering Structures, 56, 970-982. (2013).
    [9]Makris, N., & Chang, S. P. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures. Earthquake Engineering & Structural Dynamics, 29(1), 85-107. (2000).
    [10]Martelli, A., & Forni, M. Seismic isolation of civil buildings in Europe. Progress in Structural Engineering and Materials, 1(3), 286-294. (1998).
    [11]Naeim, F., & Kelly, J. M. Design of seismic isolated structures: from theory to practice: John Wiley & Sons. (1999).
    [12]Pranesh, M., & Sinha, R. VFPI: an isolation device for aseismic design. Earthquake Engineering & Structural Dynamics, 29(5), 603-627. (2000).
    [13]Soong, T., & Dargush, G. Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons. New York, 282. (1997).
    [14]Wang, Y. P., & Liao, W. H. Dynamic analysis of sliding structures with unsynchronized support motions. Earthquake Engineering & Structural Dynamics, 29(3), 297-313. (2000).
    [15]Zayas, V. A., & Low, S. Seismic isolation for strong, near-field earthquake motions. Paper presented at the Proceedings of the 12th World Congress on Earthquake Engineering, Auckland, New Zealand. (2000).
    [16]Zayas, V. A., Low, S. S., & Mahin, S. A. A Simple Pendulum Technique for Achieving Seismic Isolation. Earthquake Spectra, 6(2), 317-333. (1990).
    [17]Zayas, V. A., Low, S. S. and Mahin, S. A., “The FPS earthquake resisting system.” Experimental Report No.UCB/EERC 87/01, EERC, University of California, Berkeley, California. (1987).
    [18]江子政,「複擺隔震器於防震工程之運用」,博士論文,逢甲大學土木及水利工程研究所,台中市(2004)。
    [19]吳政彥,「變曲率滑動隔震結構之實驗與分析」,碩士論文,國立高雄第一科技大學營建工程所,高雄市(2004)。
    [20]曾旭玟,「高分子材料於結構隔震技術之應用」,碩士論文,國立高雄第一科技大學營建工程所,高雄市(2004)。
    [21]朱凱業,「多項式變曲率滑動支承之混合實驗」,碩士論文,國立成功大學土木工程研究所,台南市(2013)。
    [22]馬士勛,「配置PSIVC系統之即時類比式硬體模擬與複合試驗」,碩士論文,國立成功大學土木工程研究所,台南市(2020)。
    [23]蔡諄昶、盧煉元、王亮偉、鍾立來,「單擺式滑動隔震系統於水平垂直雙向地震力作用下之曲面效應理論與實驗探討」,結構工程,32(2),65-90,(2017)。
    [24]王彥博,「建築結構之隔震設計─摩擦單擺支承FPS篇」,台灣省土木技師公會6/18中南區結構審查講習會(2005)。
    [25]王彥博,「鋼結構裝置隔震消能元件地震反應實測與分析-摩擦單擺支承結構之耐震評估與控制(Ⅱ)」,中華民國行政院國家科學委員會專題研究計畫成果報告(1998)。
    [26]盧煉元、施明祥、張婉妮,「近斷層震波對滑動式隔震結構之影響評估」,結構工程,第十八卷,第四期,23-48頁,(2003)。
    [27]林建中,「高分子材料性質與應用」,高立圖書有限公司(1998)。

    下載圖示 校內:2025-08-24公開
    校外:2025-08-24公開
    QR CODE