簡易檢索 / 詳目顯示

研究生: 周昀璇
Chou, Yun-Hsuan
論文名稱: 利用合併給予前驅藥物 perforin-CEBPD 和 perforin-granzyme B 以強力誘導蛋白水解酵素活化並有效地毒殺前列腺癌細胞
Combination of prodrugs perforin-CEBPD and perforin-granzyme B enhance a stronger activation of caspase signaling in efficiently killing prostate cancer
指導教授: 王育民
Wang, Ju-Ming
共同指導教授: 張文昌
Chang, Wen-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 53
中文關鍵詞: 前列腺癌CEBPDCaspase 8雄性素接受器外顯遺傳修飾癌症治療前驅藥物
外文關鍵詞: prostate cancer, CEBPD, Caspase 8, AR, epigenetic modification, cancer therapy, prodrug
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前列腺癌為男性最常見的惡性腫瘤之一,並且在西方國家中其為男性癌症排名第三的致命惡性腫瘤。而在台灣近10年來,前列腺癌的發生率與死亡率也都有逐年上升的趨勢。目前用於治療前列腺癌的方式主要是透過遏止雄性素的產生,而這種方式對於早期前列腺癌是具有良好的治療效果。然而,許多病人前列腺癌的惡化,可能肇因於長期使用抗雄性素的療法而使其復發並發展成為一種快速增生及易轉移的雄性素非依賴型前列腺癌。已知,大量活化轉錄因子 CCAAT/enhancer binding protein delta (CEBPD) 會誘導癌細胞的生長停滯以及癌細胞凋亡,因此被視為一抑癌基因。在本篇研究分析發現,CEBPD 能夠被雄性素活化,因此推測 CEBPD 可能在前列腺癌的發展進程扮演關鍵的角色。然而,我們也發現當前列腺癌轉變為雄性素非依賴型態的過程中,E2F1、EZH2 及 SUZ12 的增加會造成 CEBPD 基因的靜默。進一步地,我們發現細胞凋亡啟動者 ─ 蛋白水解酵素Caspase 8 為 CEBPD的下游活化基因,利用 reporter assay 及 in vivo DNA binding assay 證實 CEBPD會直接結合至Caspase 8 的啟動子上並促進其轉錄活化。因此,以“重新活化 CEBPD 的功能”來毒殺前列腺癌為概念,並且跳脫雄性素非依賴型前列腺癌中 CEBPD 啟動子上的外顯遺傳修飾作用,我們建立一種前驅藥物 ─ 特定蛋白酶 perforin 融合蛋白的系統用以治療雄性素依賴型及雄性素非依賴型前列腺癌。實驗結果證實,合併使用 CEBPD 前驅藥物 (提高 procaspase 8 的表現) 和前驅藥物 Granzyme B (活化 procaspase 8 ) 可大量誘發前列腺癌細胞凋亡活性並抑制其生長。因此,此一特定蛋白酶perforin 融合蛋白前驅藥物的應用,可為前列腺癌提供新穎的的治療方法。

    Prostate cancer is the most common malignancy in men and the third leading cause of male cancer-related deaths in the Western world. In Taiwan, the incidence of prostate cancer has been rapidly increasing in the past 10 years. The standard therapies include androgen ablation that initially causes tumor regression. However, tumor cells will eventually relapse and develop into castration-resistant prostate cancer (CRPC). Overexpression of transcription factor CCAAT/enhancer binding protein delta (CEBPD) takes part in inducing growth arrest and apoptosis in cancer cells, which could serve as a potential tumor suppressor. Notably, in this study we demonstrated CEBPD is an androgen responsive gene, suggesting CEBPD may play a functional role in progression and development of prostate cancer. Moreover, we found that the activation of E2F1/EZH2/SUZ12 axis participates in CEBPD silencing in CRPC. We next identified that Caspase 8 gene, an apoptosis activator, is a CEBPD downstream target. Reporter assay and in vivo DNA binding assay revealed that CEBPD directly binds and activates Caspase 8 promoter activity. To achieve the idea of “reactivation of CEBPD” for the therapy of prostate cancer and to avoid the epigenetic effects on CEBPD promoter in CRPC, we therefore applied a protease-specific perforin-fused prodrug system for this issue. Our results suggest that the combination of CEBPD prodrug (induction of procaspase 8 level) and granzyme B prodrug (an activator of procaspase 8) could trigger stronger apoptotic effect and impede their proliferation in androgen dependent prostate cancer and CRPC. Accordingly, protease-specific perforin-fused prodrug therapy offers a new therapeutic strategy in treating prostate cancers.

    緒論1 1雄性素 (androgen) 與雄性素接受器 (androgen receptor) 在前列腺癌的發展進程中扮演的角色1 2在前列腺癌中蛋白酶 (protease) 的功能與特性2 3CCAAT/enhancer-binding protein delta (CEBPD)3 3-1 CCAAT/enhancer-binding protein (C/EBPs) family3 3-2 CCAAT/enhancer-binding protein delta (CEBPD) 生理功能及特性3 4基因的靜默與甲基化 (methylation) 修飾的作用3 4-1 外顯遺傳修飾 (epigenetic modification)3 4-2 外顯遺傳甲基化修飾 (epigenetic methylation) 的機制4 4-3 在前列腺癌中 Polycomb group proteins (PcG proteins) 的表現情形5 4-4 甲基化修飾在正常細胞與癌細胞中的情形5 4-5 癌細胞中 CEBPD 基因的靜默現象6 5細胞凋亡機制 (programmed cell death;apoptosis)6 5-1 概要6 5-2 細胞凋亡路徑6 6前驅藥物 (prodrug) 的特性與特定蛋白酶 perforin 融合蛋白的建立7 7研究動機8 實驗材料與方法9 A細胞株種類、細胞培養方法及穩定型細胞株 (stable cell lines) 建立9 A-1 細胞株種類及培養方法9 A-2 可誘導表現穩定型細胞 (inducible stable cell lines) 的建構9 B給藥方式9 B-1 藥物配置及儲存9 B-2 條件培養液的收取方式 (Conditioned media collection) 及濃縮10 B-3 藥物給藥方法10 C分析細胞 mRNA 表現10 C-1 細胞全量 RNA 萃取10 C-2 反轉錄聚合酶連鎖反應 (Reverse transcriptase-PCR;RT-PCR)11 C-3 聚合酶連鎖反應 (PCR)11 D分析細胞蛋白質表現11 D-1 細胞全量蛋白萃取 (Total cell lysate protein extraction)11 D-2 蛋白質定量12 D-3 SDS-PAGE 膠體電泳製作12 D-4 蛋白質電泳、半乾式轉漬法 (西方墨點法;Western blot)12 D-5 化學冷光呈色13 E細胞轉染及報導基因分析 (Reporter assay)13 E-1 暫時性細胞轉染 (Transient transfection)13 E-2 Luciferase 的活性測定14 F質體放大14 F-1 質體轉殖14 F-2 大量抽取質體 DNA (Midi-plasmid purification)14 G染色質免疫沉澱分析 (Chromatin immunoprecipitation;ChIP)15 H流式細胞儀分析 ( Flow cytometry analysis)16 ICaspase 8, Caspase 3 活性分析16 J細胞存活率分析17 K統計分析方法17 實驗結果18 雄性素可活化 CEBPD 的轉錄作用18 前列腺細胞癌化過程中 CEBPD 與外顯遺傳基因修飾子 (epigenetic regulator)的表現18 前列腺癌細胞轉變成雄性素非依賴型態的過程中 SUZ12/EZH2 會抑制 AR誘導 CEBPD 的轉錄活化 CEBPD 透過活化 Caspase 8 的轉錄作用而誘導細胞凋亡20 合併處理前驅藥物 CEBPD 及 Granzyme B 融合蛋白可顯著誘導癌細胞凋 亡蛋白水解酵素的活化及抑制其生長21 實驗討論22 CEBPD 與 AR 在前列腺癌中的調控機制22 雄性素對於CEBPD啟動子報導基因的誘導轉錄活化作用22 在雄性素非依賴型前列腺癌細胞中造成 CEBPD 靜默的原因22 CEBPD 的活化調控凋亡蛋白水解酵素 procaspase 3 的蛋白表現23 誘導 CEBPD 抑癌基因表現提供癌症治療新方針24 CEBPD 基因可能扮演雙面刃 ( double-edged sword) 的角色24 前驅藥物特定蛋白酶 perforin 融合蛋白的臨床應用25 參考文獻27 自述53

    1. Jemal, A., et al. Global cancer statistics. CA Cancer J Clin 61, 69-90 (2011).
    2. Feldman, B.J. & Feldman, D. The development of androgen-independent prostate cancer. Nat Rev Cancer 1, 34-45 (2001).
    3. Hayslip, J. & Montero, A. Tumor suppressor gene methylation in follicular lymphoma: a comprehensive review. Mol Cancer 5, 44 (2006).
    4. Jones, P.A. & Baylin, S.B. The epigenomics of cancer. Cell 128, 683-692 (2007).
    5. Jones, P.A. & Laird, P.W. Cancer epigenetics comes of age. Nat Genet 21, 163-167 (1999).
    6. Baylin, S.B. & Ohm, J.E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6, 107-116 (2006).
    7. Isaacs, J.T. & Isaacs, W.B. Androgen receptor outwits prostate cancer drugs. Nat Med 10, 26-27 (2004).
    8. Litvinov, I.V., De Marzo, A.M. & Isaacs, J.T. Is the Achilles' heel for prostate cancer therapy a gain of function in androgen receptor signaling? J Clin Endocrinol Metab 88, 2972-2982 (2003).
    9. Gao, J., Arnold, J.T. & Isaacs, J.T. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. Cancer Res 61, 5038-5044 (2001).
    10. Kyprianou, N., English, H.F. & Isaacs, J.T. Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50, 3748-3753 (1990).
    11. Shen, M.M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24, 1967-2000 (2010).
    12. Culig, Z., et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54, 5474-5478 (1994).
    13. Majumder, P.K. & Sellers, W.R. Akt-regulated pathways in prostate cancer. Oncogene 24, 7465-7474 (2005).
    14. Malik, S.N., et al. Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin Cancer Res 8, 1168-1171 (2002).
    15. Gioeli, D., Mandell, J.W., Petroni, G.R., Frierson, H.F., Jr. & Weber, M.J. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59, 279-284 (1999).
    16. Gao, H., et al. Combinatorial activities of Akt and B-Raf/Erk signaling in a mouse model of androgen-independent prostate cancer. Proc Natl Acad Sci U S A 103, 14477-14482 (2006).
    17. Uzgare, A.R. & Isaacs, J.T. Enhanced redundancy in Akt and mitogen-activated protein kinase-induced survival of malignant versus normal prostate epithelial cells. Cancer Res 64, 6190-6199 (2004).
    18. Bernard, D., Pourtier-Manzanedo, A., Gil, J. & Beach, D.H. Myc confers androgen-independent prostate cancer cell growth. J Clin Invest 112, 1724-1731 (2003).
    19. Ellwood-Yen, K., et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223-238 (2003).
    20. Wang, S., et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209-221 (2003).
    21. Mulholland, D.J., et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19, 792-804 (2011).
    22. Bowen, C., et al. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res 60, 6111-6115 (2000).
    23. Asatiani, E., et al. Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res 65, 1164-1173 (2005).
    24. Perner, S., et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66, 8337-8341 (2006).
    25. Mehra, R., et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res 68, 3584-3590 (2008).
    26. Joukov, V., et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 16, 3898-3911 (1997).
    27. Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell 21, 687-690 (2010).
    28. Adrain, C., et al. Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep 12, 421-427 (2011).
    29. DeClerck, Y.A., et al. Proteases, extracellular matrix, and cancer: a workshop of the path B study section. Am J Pathol 164, 1131-1139 (2004).
    30. Webber, M.M., Waghray, A. & Bello, D. Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clin Cancer Res 1, 1089-1094 (1995).
    31. Catalona, W.J., et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med 324, 1156-1161 (1991).
    32. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161-174 (2002).
    33. Trudel, D., Fradet, Y., Meyer, F., Harel, F. & Tetu, B. Significance of MMP-2 expression in prostate cancer: an immunohistochemical study. Cancer Res 63, 8511-8515 (2003).
    34. Brehmer, B., Biesterfeld, S. & Jakse, G. Expression of matrix metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2) in prostate cancer tissue. Prostate Cancer Prostatic Dis 6, 217-222 (2003).
    35. Johnson, P.F. & McKnight, S.L. Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58, 799-839 (1989).
    36. Landschulz, W.H., Johnson, P.F., Adashi, E.Y., Graves, B.J. & McKnight, S.L. Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 2, 786-800 (1988).
    37. Ramji, D.P. & Foka, P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365, 561-575 (2002).
    38. Johnson, P.F. Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J Cell Sci 118, 2545-2555 (2005).
    39. Vinson, C., et al. Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22, 6321-6335 (2002).
    40. Robinson, G.W., Johnson, P.F., Hennighausen, L. & Sterneck, E. The C/EBPbeta transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev 12, 1907-1916 (1998).
    41. Seagroves, T.N., et al. C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev 12, 1917-1928 (1998).
    42. Poli, V. The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J Biol Chem 273, 29279-29282 (1998).
    43. Lekstrom-Himes, J. & Xanthopoulos, K.G. CCAAT/enhancer binding protein epsilon is critical for effective neutrophil-mediated response to inflammatory challenge. Blood 93, 3096-3105 (1999).
    44. Lekstrom-Himes, J. & Xanthopoulos, K.G. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem 273, 28545-28548 (1998).
    45. Wang, N.D., et al. Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269, 1108-1112 (1995).
    46. Cardinaux, J.R., Allaman, I. & Magistretti, P.J. Pro-inflammatory cytokines induce the transcription factors C/EBPbeta and C/EBPdelta in astrocytes. Glia 29, 91-97 (2000).
    47. Tengku-Muhammad, T.S., Hughes, T.R., Ranki, H., Cryer, A. & Ramji, D.P. Differential regulation of macrophage CCAAT-enhancer binding protein isoforms by lipopolysaccharide and cytokines. Cytokine 12, 1430-1436 (2000).
    48. Akira, S. & Kishimoto, T. IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol Rev 127, 25-50 (1992).
    49. Sanford, D.C. & DeWille, J.W. C/EBPdelta is a downstream mediator of IL-6 induced growth inhibition of prostate cancer cells. Prostate 63, 143-154 (2005).
    50. Pan, Y.C., et al. CEBPD reverses RB/E2F1-mediated gene repression and participates in HMDB-induced apoptosis of cancer cells. Clin Cancer Res 16, 5770-5780 (2010).
    51. Hour, T.C., et al. Transcriptional up-regulation of SOD1 by CEBPD: a potential target for cisplatin resistant human urothelial carcinoma cells. Biochem Pharmacol 80, 325-334 (2010).
    52. Takata, Y., et al. Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-delta and peroxisome proliferator-activated receptor-gamma. Circ Res 91, 427-433 (2002).
    53. Gao, H., et al. Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: a possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Mol Endocrinol 20, 1287-1299 (2006).
    54. Nishioka, K., et al. Enhanced expression and DNA binding activity of two CCAAT/enhancer-binding protein isoforms, C/EBPbeta and C/EBPdelta, in rheumatoid synovium. Arthritis Rheum 43, 1591-1596 (2000).
    55. Li, R., Strohmeyer, R., Liang, Z., Lue, L.F. & Rogers, J. CCAAT/enhancer binding protein delta (C/EBPdelta) expression and elevation in Alzheimer's disease. Neurobiol Aging 25, 991-999 (2004).
    56. Hishida, T., Nishizuka, M., Osada, S. & Imagawa, M. The role of C/EBPdelta in the early stages of adipogenesis. Biochimie 91, 654-657 (2009).
    57. Breed, D.R., Margraf, L.R., Alcorn, J.L. & Mendelson, C.R. Transcription factor C/EBPdelta in fetal lung: developmental regulation and effects of cyclic adenosine 3',5'-monophosphate and glucocorticoids. Endocrinology 138, 5527-5534 (1997).
    58. Sugahara, K., Sadohara, T., Sugita, M., Iyama, K. & Takiguchi, M. Differential expression of CCAAT enhancer binding protein family in rat alveolar epithelial cell proliferation and in acute lung injury. Cell Tissue Res 297, 261-270 (1999).
    59. Thangaraju, M., et al. C/EBPdelta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development 132, 4675-4685 (2005).
    60. Yang, G., Gregory, C.W., Shang, Q., O'Brien, D.A. & Zhang, Y.L. Differential expression of CCAAT/enhancer-binding protein-delta (c/EBPdelta) in rat androgen-dependent tissues and human prostate cancer. J Androl 22, 471-480 (2001).
    61. Ikezoe, T., et al. CCAAT/enhancer-binding protein delta: a molecular target of 1,25-dihydroxyvitamin D3 in androgen-responsive prostate cancer LNCaP cells. Cancer Res 65, 4762-4768 (2005).
    62. Gery, S., Tanosaki, S., Hofmann, W.K., Koppel, A. & Koeffler, H.P. C/EBPdelta expression in a BCR-ABL-positive cell line induces growth arrest and myeloid differentiation. Oncogene 24, 1589-1597 (2005).
    63. Ko, C.Y., Hsu, H.C., Shen, M.R., Chang, W.C. & Wang, J.M. Epigenetic silencing of CCAAT/enhancer-binding protein delta activity by YY1/polycomb group/DNA methyltransferase complex. J Biol Chem 283, 30919-30932 (2008).
    64. Balamurugan, K., et al. The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis. EMBO J 29, 4106-4117 (2010).
    65. Egger, G., Liang, G., Aparicio, A. & Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463 (2004).
    66. Holliday, R. The inheritance of epigenetic defects. Science 238, 163-170 (1987).
    67. Sharma, S., Kelly, T.K. & Jones, P.A. Epigenetics in cancer. Carcinogenesis 31, 27-36 (2010).
    68. Esteller, M. Epigenetics in cancer. N Engl J Med 358, 1148-1159 (2008).
    69. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev 16, 6-21 (2002).
    70. Takai, D. & Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99, 3740-3745 (2002).
    71. Wang, Y. & Leung, F.C. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20, 1170-1177 (2004).
    72. Herman, J.G. & Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349, 2042-2054 (2003).
    73. Weber, M., et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39, 457-466 (2007).
    74. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8, 286-298 (2007).
    75. Levine, S.S., King, I.F. & Kingston, R.E. Division of labor in polycomb group repression. Trends Biochem Sci 29, 478-485 (2004).
    76. Lund, A.H. & van Lohuizen, M. Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16, 239-246 (2004).
    77. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074-1080 (2001).
    78. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260 (1997).
    79. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693-705 (2007).
    80. Vire, E., et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871-874 (2006).
    81. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38, 413-443 (2004).
    82. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15, 57-67 (2004).
    83. Cao, R., et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039-1043 (2002).
    84. Kirmizis, A., et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18, 1592-1605 (2004).
    85. Bryant, R.J., Cross, N.A., Eaton, C.L., Hamdy, F.C. & Cunliffe, V.T. EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate 67, 547-556 (2007).
    86. Varambally, S., et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624-629 (2002).
    87. Feinberg, A.P., Cui, H. & Ohlsson, R. DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol 12, 389-398 (2002).
    88. Reik, W. & Lewis, A. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 6, 403-410 (2005).
    89. Bestor, T.H. Transposons reanimated in mice. Cell 122, 322-325 (2005).
    90. Feinberg, A.P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89-92 (1983).
    91. Feinberg, A.P. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111, 47-54 (1983).
    92. Virmani, A.K., et al. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res 7, 1998-2004 (2001).
    93. Kawakami, K., et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 92, 1805-1811 (2000).
    94. Herman, J.G., et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55, 4525-4530 (1995).
    95. Garcia, M.J., et al. Different incidence and pattern of p15INK4b and p16INK4a promoter region hypermethylation in Hodgkin's and CD30-Positive non-Hodgkin's lymphomas. Am J Pathol 161, 1007-1013 (2002).
    96. Stirzaker, C., et al. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res 57, 2229-2237 (1997).
    97. Gonzalez-Gomez, P., et al. CpG island methylation status and mutation analysis of the RB1 gene essential promoter region and protein-binding pocket domain in nervous system tumours. Br J Cancer 88, 109-114 (2003).
    98. Dobrovic, A. & Simpfendorfer, D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57, 3347-3350 (1997).
    99. Chan, K.Y., Ozcelik, H., Cheung, A.N., Ngan, H.Y. & Khoo, U.S. Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res 62, 4151-4156 (2002).
    100. Harden, S.V., et al. Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res 9, 1370-1375 (2003).
    101. Esteller, M., et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343, 1350-1354 (2000).
    102. Tada, Y., et al. Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein alpha activity in lung cancer. J Natl Cancer Inst 98, 396-406 (2006).
    103. Porter, D., et al. Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res 1, 362-375 (2003).
    104. Sivko, G.S. & DeWille, J.W. CCAAT/Enhancer binding protein delta (c/EBPdelta) regulation and expression in human mammary epithelial cells: I. "Loss of function" alterations in the c/EBPdelta growth inhibitory pathway in breast cancer cell lines. J Cell Biochem 93, 830-843 (2004).
    105. Tang, D., Sivko, G.S. & DeWille, J.W. Promoter methylation reduces C/EBPdelta (CEBPD) gene expression in the SUM-52PE human breast cancer cell line and in primary breast tumors. Breast Cancer Res Treat 95, 161-170 (2006).
    106. Agrawal, S., et al. The C/EBPdelta tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood 109, 3895-3905 (2007).
    107. Hacker, G. The morphology of apoptosis. Cell Tissue Res 301, 5-17 (2000).
    108. Zeiss, C.J. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol 40, 481-495 (2003).
    109. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516 (2007).
    110. Wajant, H. The Fas signaling pathway: more than a paradigm. Science 296, 1635-1636 (2002).
    111. Johnstone, R.W., Frew, A.J. & Smyth, M.J. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8, 782-798 (2008).
    112. Kischkel, F.C., et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14, 5579-5588 (1995).
    113. Garrido, C., et al. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13, 1423-1433 (2006).
    114. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42 (2000).
    115. Saelens, X., et al. Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861-2874 (2004).
    116. van Loo, G., et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9, 20-26 (2002).
    117. Chinnaiyan, A.M. The apoptosome: heart and soul of the cell death machine. Neoplasia 1, 5-15 (1999).
    118. Hill, M.M., Adrain, C., Duriez, P.J., Creagh, E.M. & Martin, S.J. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J 23, 2134-2145 (2004).
    119. Cory, S. & Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2, 647-656 (2002).
    120. Lieberman, J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3, 361-370 (2003).
    121. LaTulippe, E., et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 62, 4499-4506 (2002).
    122. Chen, H., et al. Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines. Endocr Relat Cancer 17, 857-873 (2010).
    123. Davis, J.N., et al. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res 66, 11897-11906 (2006).
    124. Bracken, A.P., et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22, 5323-5335 (2003).
    125. Muller, H., et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15, 267-285 (2001).
    126. Chuu, C.P., et al. Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci 18, 63 (2011).
    127. Wang, J.M., Tseng, J.T. & Chang, W.C. Induction of human NF-IL6beta by epidermal growth factor is mediated through the p38 signaling pathway and cAMP response element-binding protein activation in A431 cells. Mol Biol Cell 16, 3365-3376 (2005).
    128. Gregory, C.W., et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem 279, 7119-7130 (2004).
    129. Son, B.K., et al. Androgen receptor-dependent transactivation of growth arrest-specific gene 6 mediates inhibitory effects of testosterone on vascular calcification. J Biol Chem 285, 7537-7544 (2010).
    130. Blankvoort, B.M., et al. Development of an androgen reporter gene assay (AR-LUX) utilizing a human cell line with an endogenously regulated androgen receptor. Anal Biochem 298, 93-102 (2001).
    131. Valdez, C.D., et al. Repression of androgen receptor transcription through the E2F1/DNMT1 axis. PLoS One 6, e25187 (2011).
    132. Porn-Ares, M.I., Saido, T.C., Andersson, T. & Ares, M.P. Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells. Biochem J 374, 403-411 (2003).
    133. Chen, L., Smith, L., Wang, Z. & Smith, J.B. Preservation of caspase-3 subunits from degradation contributes to apoptosis evoked by lactacystin: any single lysine or lysine pair of the small subunit is sufficient for ubiquitination. Mol Pharmacol 64, 334-345 (2003).
    134. Tenev, T., Marani, M., McNeish, I. & Lemoine, N.R. Pro-caspase-3 overexpression sensitises ovarian cancer cells to proteasome inhibitors. Cell Death Differ 8, 256-264 (2001).
    135. Tan, M., et al. SAG/ROC-SCF beta-TrCP E3 ubiquitin ligase promotes pro-caspase-3 degradation as a mechanism of apoptosis protection. Neoplasia 8, 1042-1054 (2006).
    136. Nakayama, K.I. & Nakayama, K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol 16, 323-333 (2005).
    137. Skaar, J.R., D'Angiolella, V., Pagan, J.K. & Pagano, M. SnapShot: F Box Proteins II. Cell 137, 1358, 1358 e1351 (2009).
    138. Babaei-Jadidi, R., et al. FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. J Exp Med 208, 295-312 (2011).
    139. Hoeck, J.D., et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci 13, 1365-1372 (2010).
    140. Fawcett, T.W., Eastman, H.B., Martindale, J.L. & Holbrook, N.J. Physical and functional association between GADD153 and CCAAT/enhancer-binding protein beta during cellular stress. J Biol Chem 271, 14285-14289 (1996).
    141. Lai, P.H., et al. HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. Biochim Biophys Acta 1783, 1803-1814 (2008).
    142. Sell, S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51, 1-28 (2004).
    143. Yeh, W.C., Cao, Z., Classon, M. & McKnight, S.L. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9, 168-181 (1995).
    144. Wang, J.M., Ko, C.Y., Chen, L.C., Wang, W.L. & Chang, W.C. Functional role of NF-IL6beta and its sumoylation and acetylation modifications in promoter activation of cyclooxygenase 2 gene. Nucleic Acids Res 34, 217-231 (2006).
    145. Wang, W., Bergh, A. & Damber, J.E. Increased expression of CCAAT/enhancer-binding protein beta in proliferative inflammatory atrophy of the prostate: relation with the expression of COX-2, the androgen receptor, and presence of focal chronic inflammation. Prostate 67, 1238-1246 (2007).
    146. DiPaola, R.S., et al. Characterization of a novel prostate-specific antigen-activated peptide-doxorubicin conjugate in patients with prostate cancer. J Clin Oncol 20, 1874-1879 (2002).
    147. Mhaka, A., Denmeade, S.R., Yao, W., Isaacs, J.T. & Khan, S.R. A 5-fluorodeoxyuridine prodrug as targeted therapy for prostate cancer. Bioorg Med Chem Lett 12, 2459-2461 (2002).
    148. Albright, C.F., et al. Matrix metalloproteinase-activated doxorubicin prodrugs inhibit HT1080 xenograft growth better than doxorubicin with less toxicity. Mol Cancer Ther 4, 751-760 (2005).
    149. Qin, J., et al. The PSA(-/lo) Prostate Cancer Cell Population Harbors Self-Renewing Long-Term Tumor-Propagating Cells that Resist Castration. Cell Stem Cell 10, 556-569 (2012).
    150. Furuya, Y., Nagakawa, O. & Fuse, H. Prognostic significance of serum soluble Fas level and its change during regression and progression of advanced prostate cancer. Endocr J 50, 629-633 (2003).
    151. Furuya, Y., Fuse, H. & Masai, M. Serum soluble Fas level for detection and staging of prostate cancer. Anticancer Res 21, 3595-3598 (2001).

    無法下載圖示 校內:2017-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE