簡易檢索 / 詳目顯示

研究生: 杜芳慧
Do, Phuong-Huyen
論文名稱: 側鏈含Carbazole及/或Benzothiadiazole衍生物之乙烯共聚高分子:合成與光電性質
Vinyl Copolymers Containing Pendant Carbazole and/or Benzothiadiazole Derivatives: Synthesis and Optoelectronic Properties
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 79
中文關鍵詞: 乙烯共聚物咔唑苯並噻二唑
外文關鍵詞: Vinyl copolymer, Carbazole, Benzothiadiazole, Fluorene
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近聚合物在磷光有機發光元件中被廣泛研究,這是由於它具有高效率。本研究主要著重新的咔唑為基礎的乙烯共聚物在特定濃度的合成,鑑定和研究的光學和電化學性能。
    側鏈含有咔唑衍生物或沒有芴鏈段和/或側鏈含有苯並噻二唑衍生物兩個新的乙烯共聚物poly(9-(4-vinylphenyl)-9H-carbazole-co-4-phenyl-7-(4-vinylphenyl)benzo[c][1,2,5] thiadiazole) (P1) 和poly(9-(4-vinylphenyl)-9H-carbazole-co-3,6-bis(9,9-dip-tolyl-9H-fluoren-2-yl)-9-(4-vinylphenyl)-9H-carbazole) (P2) 經由自由基聚合反應來合成。經由1H NMR,FT-IR,GPC,和元素分析 (EA) 來鑑定化學結構。利用TGA和DSC來量測它們的熱性質。分別以UV-Vis,PL光譜和循環伏安來進行光學和電化學性質的研究。第3章是有關於P1的鑑定,以及光學和電化學性質的探討。P1有良好的熱穩定性,它的玻璃化轉變溫度(Tg)是132oC 和分解溫度(Td)(5%重量損失)是396oC。P1的PL放光光譜值在499 nm處的位置完全與苯並噻二唑衍生物的放光光譜重疊。三重態能量為2.65 eV和它的HOMO, LUMO能階分別為 -5.59,-3.06 eV。這種聚合物可應用於作為東道主材料綠色或紅色有機電。第4章有關於P2的鑑定,以及光學和電化學性質的探討。P2有良好的熱穩定性,它的玻璃化轉變溫度(Tg)是 130oC和Td是401oC。P2的PL光譜位置和單體含芴在385和402 nm相似。這種聚合物能表現出高的三重態(2.46 eV)和高HOMO能階(-5.28 eV),具有應用於主體磷光聚合物材料的特點。此外,合理的HOMO能階(由於含有側鏈咔唑基團)也使得它是適合的電洞傳送材料。

    Phosphorescent organic light-emitting devices based on polymers have recently been widely studied owing to its high efficiency. The research in this essay also focuses on this topic with the particular concentration on the synthesis, characterization and investigation of opto-electronic properties of the new carbazole-based vinyl copolymers.
    Two new vinyl copolymers poly(9-(4-vinylphenyl)-9H-carbazole-co-4-phenyl-7-(4-vinylphenyl)benzo[c][1,2,5]thiadiazole) (P1) and poly(9-(4-vinylphenyl)-9H-carbazole-co-3,6-bis(9,9-dip-tolyl-9H-fluoren-2-yl)-9-(4-vinylphenyl)-9H-carbazole) (P2) containing pendant carbabazole derivatives with or without fluorene segments and/or pendant benzothiadiazole derivative have been synthesized by free radical polymerization reaction and characterized by 1H NMR, FT-IR, GPC and elemental analysis (EA). Thermal properties were determined by TGA and DSC. Optical and electrochemical properties were investigated by UV-Vis, PL spectroscopy and cyclic voltammetry. Chapter 3 presents the characterization, optical and electrochemical properties of P1. The P1 exhibited good thermal stability with glass transition temperature (Tg) at 132oC and decomposition temperature (Td) (at 5% weight loss) at 396oC. The PL spectrum of P1 showed emission band peaking at position 499 nm which completely overlap with emission band of benzothiadiazole derivative. The high triplet energy 2.65 eV and reasonable HOMO, LUMO energy levels -5.59, -3.06 eV suggest this polymer can be applied as the host material for green or red electrophosphorescence. Chapter 4 presents the characterization, optical and electrochemical properties of P2. The P2 also revealed good thermal stability with Tg at 130oC and Td at 401oC. The PL spectrum of P2 displayed at similar position as monomer containing fluorene at 385 and 402 nm. This polymer demonstrated high triplet energy (2.46 eV) and high HOMO energy level (-5.28 eV), which attain characteristics to be a host material for phosphorescent polymer light-emitting devices. Besides, the reasonable HOMO energy level (due to the presence of pendant carbazole units) also makes it a promising candidate of hole-transporting layer.

    ABSTRACT I 摘要 II ACKNOWLEDGEMENTS IV TABLE OF CONTENT V LIST OF SCHEMES VII LIST OF TABLES VII LIST OF FIGURES VIII CHAPTER ONE INTRODUCTION, LITERATURE REVIEW AND THEORETICAL BACKGROUND 1 1.1 Electroluminescence and Polymer Light Emitting Diode. 1 1.2 Background of PLED. 5 1.2.1 Fluorescence and Phosphorescence (or Photoluminescence). 5 1.2.2 Photoluminescence. 6 1.2.3 Device Working Principal and Structure. 7 1.2.4 Materials used in OLEDs. 12 1.2.5 Phosphorescent OLEDs and Carbazole. 15 1.3 Photophysical Aspects of Electrophosphorescence. 18 1.3.1 Singlet-triplet Excitons Ratio. 18 1.3.2 Exciton transfer processes. 19 1.4 Research Motivation. 23 CHAPTER TWO EXPERIMENTAL SECTION 24 2.1 Instruments of Chemical Synthesis. 24 2.2 Measurements. 25 2.3 Materials. 29 2.4 Scheme of Monomers and Polymers. 31 2.5 Synthetic Procedures. 34 2.5.1 Synthesis of Monomers. 34 2.5.2 Synthesis of polymers. 38 CHAPTER THREE CHARACTERIZATION, OPTICAL AND ELECTROCHEMICAL PROPERTIES OF VINYL COPOLYMER CONTAINING PENDANT CARBAZOLE AND BENZOTHIADIAZOLE DERIVATIVES 49 3.1 Introduction. 50 3.2 Experimental. 51 3.3 Results and Discussions. 51 3.3.1 Synthesis and Characterization. 51 3.3.2 Thermal properties. 52 3.3.3 Optical properties. 53 3.3.4 Electrochemical properties. 57 3.4 Summary. 60 CHAPTER FOUR CHARACTERIZATION, OPTICAL AND ELECTROCHEMICAL PROPERTIES OF VINYL COPOLYMER CONTAINING PENDANT CARBAZOLE DERIVATIVES 61 4.1 Introduction. 62 4.2 Experimental. 63 4.3 Results and discussions. 63 4.3.1 Synthesis and Characterization. 63 4.3.2 Thermal properties. 64 4.3.3 Optical properties. 65 4.3.4 Electrochemical properties. 68 4.4 Summary. 72 CHAPTER FIVE CONCLUSIONS 73 REFERENCES 74 APPENDIX 79

    [1] "Electroluminescence," in Wikipedia, ed.
    [2] H. J. Round, "A note on carborudum," Electron. World, vol. 19, pp. 309-310, 1907.
    [3] A. Bernanose, M. Comte, and P. Vouaux, "A new method of emission of light by certain organic compounds," J. Chem. Phys., vol. 50, pp. 64–68, 1953.
    [4] A. Bernanose, "The mechanism of organic electroluminescence," J. Chem. Phys., vol. 52, pp. 396–400, 1955.
    [5] M. Pope, H. Kallman, and P. Magnante, "Electroluminescence in organic crystals," J. Chem. Phys., vol. 38, pp. 2042–2043, 1963.
    [6] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
    [7] J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature, vol. 347, pp. 539 - 541, 1990.
    [8] A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, and A. B. Holmes, "Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices," Chem Rev. , vol. 109, pp. 897–1091, 2009.
    [9] "SID 2002 Advance Program," 2002.
    [10] "Samsung SDI, IMID Exhibition, Asia Display / IMID'04, Daegu, Korean," 2004.
    [11] F. F. So and S. R. Forrest, "Evidence for exciton confinement in crystalline organic multiple quantum wells," Phys. Rev. Lett. , vol. 66, pp. 2649–2652, 1991.
    [12] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, "Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8-hydroxyquinoline aluminum/aromatic diamine multilayer structure," Appl. Phys. Lett., vol. 63, pp. 1871-1873, 1993.
    [13] G. Yu, "High performance photonic devices made with semiconducting polymers," Synth. Met., vol. 80, pp. 143-150, 1996.
    [14] H. Wang and G. Yu, "Copolymers Having Tunable Energy Levels and Color of Emission," 2003.
    [15] B. Geffroy, P. le Roy, and C. Prat, "Organic light-emitting diode (OLED) technology: materials, devices and display technologies," Polym. Int., vol. 55, pp. 572–582, 2006.
    [16] A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, "Poly(p-phenylenevinylene) light-emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement," Appl. Phys. Lett. , vol. 61, pp. 2793–2795, 1992.
    [17] M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin, and T. M. Miller, "Limits to Quantum Efficiency in Electroluminescence Devices Based on Conjugated Polymers," Mol. Cryst. Liq. Cryst. , vol. 256, pp. 17–25, 1994.
    [18] J. Y. Lee, J. H. Kwon, and H. K. Chung, "High efficiency and low power consumption in active matrix organic light emitting diodes," Org. Electron. , vol. 4, pp. 143–148, 2003.
    [19] R. C. Kwong, M. S. Weaver, M. -H. Lu, Y. J. Tung, A. B. Chwang, T. X. Zhou, M. Hack, and J. J. Brown, "Current status of electrophosphorescent device stability," Org. Electron. , vol. 4, pp. 155–164, 2003.
    [20] "Chem 312 L11a Photoluminescence spectroscopy," ed, 2007.
    [21] D. Braun and A. J. Heeger, "Visible light emission from semiconducting polymer diodes," Appl. Phys. Lett., vol. 58, pp. 1982-1984, 1991.
    [22] Organc Light Emitting Materials and Devices: CRC Press, 2007.
    [23] M. D. McGehee, E. K. Miller, D. Moses, and A. J. Heeger, "Twenty years of conducting polyemrs: from fundamental science to applications," in Advances in Synthetic Metals: Twenty Years of Progress in Science and Technology, Amsterdam, 1999, pp. 98-205.
    [24] J. Wang, R. G. Sun, G. Yu, and A. J. Heeger, "Fast pulsed electroluminescence from polymer light-emitting diodes," J. Appl. Phys., vol. 91, pp. 2417-2422, 2002.
    [25] L. Akcelrud, "EL polymers," Progress in Polymer Science, vol. 28, pp. 875-962, 2003.
    [26] E. Bellmann, S. E. Shaheen, S. Thayumanavan, S. Barlow, R. H. Grubbs, S. R. Marder, B. Kippelen, and N. Peyghambarian, "New Triarylamine-Containing Polymers as Hole Transport Materials in Organic Light-Emitting Diodes: Effect of Polymer Structure and Cross-Linking on Device Characteristics," Chemistry of Materials vol. 10, pp. 1668–1676, 1998
    [27] Y. Sato, S. Ichinosawa, and H. Kanai, "Operation Characteristics and Degradation of Organic Electroluminescent Devices," IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, pp. 40 - 48, 1998
    [28] F. J. Duarte, L. S. Liao, and K. M. Vaeth, "Coherence characteristics of electrically excited tandem organic light-emitting diodes," Optics letters vol. 30, pp. 3072–3074, 2005
    [29] F. J. Duarte, "Coherent electrically excited organic semiconductors: visibility of interferograms and emission linewidth," Optics letters, vol. 32, pp. 412-414, 2007.
    [30] Conjugated Polymers and Related Materials: The Interconnection of Chemical and Electronic Structure: Oxford University Press, 1993.
    [31] Handbook of Advanced Electronic and Photonic Materials and Devices: Academic Press, 2001.
    [32] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," J. Appl. Phys. , vol. 90, pp. 5048-5051, 2001.
    [33] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, pp. 4-6, 1999.
    [34] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature vol. 395, pp. 151–154, 1998.
    [35] Y. Kawamura, S. Yanagida, and S. R. Forrest, "Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers," J. Appl. Phys., vol. 92, pp. 87-93, 2002.
    [36] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, "Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices," Appl. Phys. Lett., vol. 83, pp. 569–571, 2003.
    [37] A. van Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. Q. Langeveld, C. Rothe, A. Monkmannn, I. Bach, P. Stossel, and K. Brunner, "Carbazole compounds as host materials in light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes," J. Am. Chem. Soc. , vol. 126, pp. 7718-7727, 2004.
    [38] W. D. Grill, "Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone ad poly-n-vinylcarbazole," J. Appl. Phys., vol. 43, pp. 5033-5040, 1972.
    [39] J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, "Bright blue electroluminescence from poly-(N-vinylcarbazole)," J. Appl. Phys., vol. 63, pp. 2627-2629, 1993.
    [40] C. Lee, K. B. Lee, and J. Kim, "Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter," Appl. Phys. Lett., vol. 77, pp. 2280-2282, 2000.
    [41] C. C. Lee, "The synthesis and Optoelectronic Properties of Electrophosphorescent Host Polymers Containing Triphenylamine and Carbazole," Master, Chemical Engineering, National ChengKung Univeristy, 2008.
    [42] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, and A. J. Heeger, "High-efficiency polymer-based electrophosphorescent devices," Adv. Matter, vol. 14, pp. 581–585, 2002.
    [43] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, "Formation cross-sections of singlet and triplet excitons in p-conjugated polymers," Nature, vol. 409, pp. 494-497, 2001.
    [44] M. A. Baldo, D. F. O'Brien, M.E. Thompson, and S. R. Forrest, "Excitonic singlet-triplet ratios in a semiconducting organic thin film," Phys. Rev. B, vol. 60, pp. 14422–14428, 1999.
    [45] A. Jablonski, "Efficiency of anti-stokes fluorescence in dyes," Nature, vol. 131, pp. 839-841, 1933.
    [46] D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys., vol. 21, pp. 836-850, 1953.
    [47] M. A. Baldo, C. Adachi, and S. R. Forrest, "Transient analysis of electrophosphorescence II. Transient analysis of Triplet-triplet annihilation," Phys. Rev. B, vol. 62, pp. 10967-10977, 2000.
    [48] J. Huang, Y. Niu, Q. Hou, W. Yang, Y. Mo, M. Yuan, and Y. Cao, "Novel electroluminescent polymers derived from carbazole and benzothiadiazole," Macromolecules, vol. 35, pp. 6080-6082, 2002.
    [49] L. Yan, J. Yang, M. Zhou, and Q. Zhu, "Fabrication of conjugated polymer arrays by spinodal dewetting," Polym. Int., vol. 53, pp. 1968–1972, 2004.
    [50] Highly Efficient OLEDs with Phosphorescent Materials: Wiley-VCH, 2007.
    [51] R. H. Partridge, "Electroluminescence from polyvinylcarbazole films (parts 1-4)," Polymer, vol. 24, pp. 733-762, 1983.
    [52] B. Hu, Z. Yang, and F. E. Karasz, "Electroluminescence of pure poly(N-vinylcarbazole) and its blends with a multiblock copolymer," J. Appl. Phys., vol. 76, pp. 2419-2422, 1994.
    [53] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Muira, T. Takiguchi, S. Oakada, M. Hoshino, and K. Ueno, "Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light emitting diode," J. Am. Chem. Soc., vol. 125, pp. 12971-12979, 2003.
    [54] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, "Highly phosphorescent bis-cyclometalated iridum complexes: synthesis, photophysical characterization, and use in organic light-emitting diodes," J. Am. Chem. Soc., vol. 123, pp. 4304-4312, 2001.
    [55] J.-F. Morin and M. Leclerc, "Synthesis of conjugated polymers derived from N-alkyl-2,7-carbazoles," Macromolecules, vol. 34, pp. 4680-4682, 2001.
    [56] J.-F. Morin, S. Beaupre ´, M. Leclerc, I. Le ´vesque, and M. D’Iorio, "Blue light-emitting devices from new conjugated poly(N-substituted-2,7-carbazole) derivatives," Appl. Phys. Lett., vol. 80, pp. 341-343, 2002.
    [57] B.-Y. Hsieh, "Copolyfuorenes Slightly Doped with Chromophores: Synthesis, Optoelectronic Properties and Applications in White-light-Emitting Diodes," PhD, Chemical Engineering, National ChengKung University, 2009.
    [58] H. B. Michaelson, "Relation between an atomic electronegativity scale and the work function," IBM J. Res. Develop., vol. 22, p. 72, 1978.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE