| 研究生: |
劉芳媛 Liou, Fang-Yuan |
|---|---|
| 論文名稱: |
含Rhodamine衍生物之螢光共聚高分子合成及其金屬離子感測性質分析 Synthesis of Rhodamine-based Fluorescent Copolymers for Application in Metal-ion Sensing |
| 指導教授: |
吳文中
Wu, Wen-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 螢光感測器 、汞離子 、聚集誘導發光 、跨鍵能量轉移 |
| 外文關鍵詞: | fluorescent sensor, mercury ion, aggregation-induced emission, through-bond energy transfer |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成出二rhodamine衍生物4-(3-(3',6'-bis(diethylamino)- 3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)thioureido)phenyl methacrylate (RB)與4-(3-(3',6'-bis(diethylamino)-3-oxo-5-(4-(1,2,2-triphenylvinyl)phenyl)spiro[isoindoline-1,9'-xanthen]-2-yl)thioureido)phenyl methacrylate (TR)分別作為turn-on與TBET汞離子螢光感測器,並以自由基聚合法(free radical polymerization)與親水性單體N-isopropylacrylamide (NIPAAm)及N-hydroxymethylacrylamide (NMA)合成出不同螢光單體比例之共聚高分子poly(NIPAAm-co-NMA-co-RB)與poly(NIPAAm-co-NMA-co-TR),改善螢光單體的親水性,使其更容易與水溶液中的離子作用。
本研究所合成之感測器對於Hg2+具有感測性,能夠誘導硫代胺基脲(thiosemicarbazide)形成噁二唑(oxadiazole),為不可逆的脫硫環化反應,使螺內醯胺(spirolactam)開環,促使rhodamine螢光強度增加,溶液由無色變為粉紅色,並且具有快速響應性。TR為結合兩螢光基團之分子,以tetraphenylethene作為能量供體,rhodamine作為能量受體,其中tetraphenylethene結構具有聚集誘導發光(aggregation-induced emission, AIE)特性,在弱親和力溶劑中聚集,使分子內旋轉受到限制而放出螢光,添加Hg2+能夠藉由跨鍵能量轉移(trough-bond energy transfer, TBET)的產生觀察到螢光波長的消長與位移,並且具有較大的stokes shift。
In this study, random copolymers poly(NIPAAm-co-NMA-co-RB) and poly(NIPAAm-co-NMA-co-TR) were synthesized by free radical polymerization. Rhodamine derivatives RB and TR were used as the turn-on and TBET fluorescent sensor for the recognition of mercury ions, respectively. NIPAAm and NMA segments were designed to increase hydrophilicity to facilitate the sensing ability of mercury ions in aqueous solution. The system utilized the irreversible Hg2+-promoted reaction of thiosemicarbazides to form 1,3,4-oxadiazoles, which possess the advantage of quick response time. The interaction with mercury ions could trigger the transformation process from ring-closed spirolactam form to ring-opened amide for rhodamine moieties, which can enhance the fluorescence intensity of rhodamine moieties and the color of the solution was changed from colorless to pink. TR is constructed by coupling a tetraphenylethene donor with a rhodamine acceptor. The tetraphenylethene group of TR with aggregation-induced emission phenomenon showed strong emission in a poor solvent is attributed to the restriction of intramolecular rotation. Upon the addition of mercury ions in the poor solvent, the change of the fluorescent wavelength and intensity could be observed due to through-bond energy transfer, and possessed a large pseudo-stokes shift.
1. Rajeswari, T. R. &Sailaja, N. Impact of heavy metals on the environment. Impact heavy Met. Environ. 175–181 (1992).
2. Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).
3. Nagajyoti, P. C., Lee, K. D. &Sreekanth, T. V. M. Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters vol. 8 199–216 (2010).
4. Mohammed, A. S., Kapri, A. &Goel, R. Heavy Metal Pollution: Source, Impact, and Remedies. in 1–28 (2011).
5. Fu, F. &Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92, 407–418 (2011).
6. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. &Sutton, D. J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 101, 133–164 (2012).
7. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B. &Beeregowda, K. N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014).
8. Kurup, P., Sullivan, C., Hannagan, R., Yu, S., Azimi, H., Robertson, S., Ryan, D., Nagarajan, R., Ponrathnam, T. &Howe, G. A Review of Technologies for Characterization of Heavy Metal Contaminants. Indian Geotech. J. 47, 421–436 (2017).
9. Valeur, B. Molecular Fluorescence. in digital Encyclopedia of Applied Physics 477–531 (American Cancer Society, 2009).
10. Fereja, T. H., Hymete, A. &Gunasekaran, T. A Recent Review on Chemiluminescence Reaction, Principle and Application on Pharmaceutical Analysis. ISRN Spectrosc. 2013, 230858 (2013).
11. Bakhoda, S., Assadi, M. K., Ahmadi Kandjani, S., AlKayiem, H. H. &Bhat, A. H. Application of Quantum Dot nanocrystal in Luminescent solar concentrators. IOP Conf. Ser. Mater. Sci. Eng. 328, (2018).
12. John D. Roberts, M. C. C. Basic principles of organic chemistry. (1965).
13. Zielinski, T. J., Harvey, E., Sweeney, R. &Hanson, D. M. Quantum States of Atoms and Molecules. J. Chem. Educ. 82, 1880 (2005).
14. Harris, D. C. &Bertolucci, M. D. Symmetry and spectroscopy: an introduction to vibrational and electronical spectroscopy. (1978).
15. Arnaoutakis, G. &Näther, D. Quenching of Fluorescence With Temperature. 1–3 (2016).
16. Lakowicz, J. R. Principles of fluorescence spectroscopy, 3rd Edition, Joseph R. Lakowicz, editor. Principles of fluorescence spectroscopy, Springer, New York, USA, 3rd edn, 2006. (2006).
17. Fraiji, L. K., Hayes, D. M. &Werner, T. C. Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory. J. Chem. Educ. 69, 424 (1992).
18. Acquavella, M. F., Evans, M. E., Farraher, S. W., Névoret, C. J. &Abelt, C. J. Static and dynamic fluorescence quenching of a dicyanoanthracene-capped β-cyclodextrin. J. Chem. Soc. Perkin Trans. 2 385–388 (1995).
19. Cammann, K., Lemke, U., Rohen, A., Sander, J., Wilken, H. &Winter, B. Chemical Sensors and Biosensors—Principles and Applications. Angew. Chemie Int. Ed. English 30, 516–539 (1991).
20. Kaur, K., Saini, R., Kumar, A., Luxami, V., Kaur, N., Singh, P. &Kumar, S. Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord. Chem. Rev. 256, 1992–2028 (2012).
21. Du, J., Hu, M., Fan, J. &Peng, X. Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media. Chem. Soc. Rev. 41, 4511–4535 (2012).
22. Valeur, B. &Leray, I. PCT (Photoinduced Charge Transfer) Fluorescent Molecular Sensors for Cation Recognition. in New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences (eds. Valeur, B. &Brochon, J.-C.) 187–207 (Springer Berlin Heidelberg, 2001).
23. deSilva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T. &Rice, T. E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 97, 1515–1566 (1997).
24. Malkondu, S. A highly selective and sensitive perylenebisimide-based fluorescent PET sensor for Al3+ determination in MeCN. Tetrahedron 70, 5580–5584 (2014).
25. Leray, I., Valeur, B., O’Reilly, F., Habib Jiwan, J.-L., Soumillion, J.-P. &Valeur, B. A new calix[4]arene-based fluorescent sensor for sodium ion. Chem. Commun. 795–796 (1999).
26. Kakizawa, Y., Akita, T. &Nakamura, H. Syntheses and Complexing Behavior of New Fluorescent Reagents for Alkaline Earth Metal ions. Chem. Lett. 22, 1671–1674 (1993).
27. Matsumoto, H. &Shinkai, S. Metal-induced conformational change in pyrene-appended calix[4]crown-4 which is useful for metal sensing and guest tweezing. Tetrahedron Lett. 37, 77–80 (1996).
28. Chen, Y., Tsao, K. &Keillor, J. W. Fluorogenic protein labelling: a review of photophysical quench mechanisms and principles of fluorogen design. Can. J. Chem. 93, 389–398 (2014).
29. Kumar, N., Bhalla, V. &Kumar, M. Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions. Analyst 139, 543–558 (2014).
30. Fan, J., Hu, M., Zhan, P. &Peng, X. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem. Soc. Rev. 42, 29–43 (2013).
31. Han, Z.-X., Zhang, X.-B., Li, Z., Gong, Y.-J., Wu, X.-Y., Jin, Z., He, C.-M., Jian, L.-X., Zhang, J., Shen, G.-L. &Yu, R.-Q. Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+ Using a Rhodamine Spirolactam as a Trigger. Anal. Chem. 82, 3108–3113 (2010).
32. Ueno, Y., Jose, J., Loudet, A., Pérez-Bolívar, C., Anzenbacher, P. &Burgess, K. Encapsulated Energy-Transfer Cassettes with Extremely Well Resolved Fluorescent Outputs. J. Am. Chem. Soc. 133, 51–55 (2011).
33. Gong, Y.-J., Zhang, X.-B., Zhang, C.-C., Luo, A.-L., Fu, T., Tan, W., Shen, G.-L. &Yu, R.-Q. Through Bond Energy Transfer: A Convenient and Universal Strategy toward Efficient Ratiometric Fluorescent Probe for Bioimaging Applications. Anal. Chem. 84, 10777–10784 (2012).
34. Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. &Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 115, 11718–11940 (2015).
35. Li, Y., Zhong, H., Huang, Y. &Zhao, R. Recent advances in AIEgens for metal ion biosensing and bioimaging. Molecules 24, 1–18 (2019).
36. Hong, Y., Lam, J. W. Y. &Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011).
37. Hong, Y., Lam, J. W. Y. &Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 4332.
38. An, B.-K., Kwon, S.-K., Jung, S.-D. &Park, S. Y. Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles. J. Am. Chem. Soc. 124, 14410–14415 (2002).
39. Oelkrug, D., Tompert, A., Gierschner, J., Egelhaaf, H.-J., Hanack, M., Hohloch, M. &Steinhuber, E. Tuning of Fluorescence in Films and Nanoparticles of Oligophenylenevinylenes. J. Phys. Chem. B 102, 1902–1907 (1998).
40. Li, Y., Li, F., Zhang, H., Xie, Z., Xie, W., Xu, H., Li, B., Shen, F., Ye, L., Hanif, M., Ma, D. &Ma, Y. Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission. Chem. Commun. 231–233 (2007).
41. Mei, J., Hong, Y., Lam, J. W. Y., Qin, A., Tang, Y. &Tang, B. Z. Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts. Adv. Mater. 26, 5429–5479 (2014).
42. Chen, J., Law, C. C. W., Lam, J. W. Y., Dong, Y., Lo, S. M. F., Williams, I. D., Zhu, D. &Tang, B. Z. Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater. 15, 1535–1546 (2003).
43. Leung, N. L. C., Xie, N., Yuan, W., Liu, Y., Wu, Q., Peng, Q., Miao, Q., Lam, J. W. Y. &Tang, B. Z. Restriction of Intramolecular Motions: The General Mechanism behind Aggregation-Induced Emission. Chem. – A Eur. J. 20, 15349–15353 (2014).
44. Yao, L., Zhang, S., Wang, R., Li, W., Shen, F., Yang, B. &Ma, Y. Highly Efficient Near-Infrared Organic Light-Emitting Diode Based on a Butterfly-Shaped Donor–Acceptor Chromophore with Strong Solid-State Fluorescence and a Large Proportion of Radiative Excitons. Angew. Chemie Int. Ed. 53, 2119–2123 (2014).
45. Chen, X., Pradhan, T., Wang, F., Kim, J. S. &Yoon, J. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev. 112, 1910–1956 (2012).
46. Dujols, V., Ford, F. &Czarnik, A. W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water. J. Am. Chem. Soc. 119, 7386–7387 (1997).
47. Liu, W.-Y., Li, H.-Y., Lv, H.-S., Zhao, B.-X. &Miao, J.-Y. A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu2+ in living cell. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 95, 658–663 (2012).
48. Yang, Y.-K., Yook, K.-J. &Tae, J. A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media. J. Am. Chem. Soc. 127, 16760–16761 (2005).
49. Yang, X., Qin, X., Li, Y., Yan, M., Cui, Y. &Sun, G. TBET-based ratiometric fluorescent probe for Hg2+ with large pseudo-Stokes shift and emission shift in aqueous media and intracellular colorimetric imaging in live Hela cells. Biosens. Bioelectron. 121, 62–71 (2018).
50. Stuart, M. A. C., Huck, W. T. S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V.V, Urban, M., Winnik, F., Zauscher, S., Luzinov, I. &Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).
51. Gibson, M. I. &O’Reilly, R. K. To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles. Chem. Soc. Rev. 42, 7204–7213 (2013).
52. Jain, K., Vedarajan, R., Watanabe, M., Ishikiriyama, M. &Matsumi, N. Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers. Polym. Chem. 6, 6819–6825 (2015).
53. Reddy, P. M., Taha, M., Venkatesu, P., Kumar, A. &Lee, M.-J. Destruction of hydrogen bonds of poly(N-isopropylacrylamide) aqueous solution by trimethylamine N-oxide. J. Chem. Phys. 136, 234904 (2012).
54. Taleb, S. Switchable and Reversible Superhydrophobic Surfaces: Part One. in (ed. Darmanin, T.) Ch. 7 (IntechOpen, 2018).
55. Volfova, P., Chrastova, V., Cernakova, L., Mrenica, J. &Kozankova, J. Properties of polystyrene/poly(butyl acrylate) core/shell polymers modified with N-methylol acrylamide. Macromol. Symp. 170, 283–290 (2001).
56. Kuckling, D., Harmon, M. E. &Frank, C. W. Photo-Cross-Linkable PNIPAAm Copolymers. 1. Synthesis and Characterization of Constrained Temperature-Responsive Hydrogel Layers. Macromolecules 35, 6377–6383 (2002).
57. Chuang, W.-J. &Chiu, W.-Y. Thermo-responsive nanofibers prepared from poly(N-isopropylacrylamide-co-N-methylol acrylamide). Polymer (Guildf). 53, 2829–2838 (2012).
58. Saeed, A., Georget, D. M. R. &Mayes, A. G. Synthesis, characterisation and solution thermal behaviour of a family of poly (N-isopropyl acrylamide-co-N-hydroxymethyl acrylamide) copolymers. React. Funct. Polym. 70, 230–237 (2010).
59. Zhao, Y., Qiu, Y., Wang, H., Chen, Y., Jin, S. &Chen, S. Preparation of Nanofibers with Renewable Polymers and Their Application in Wound Dressing. Int. J. Polym. Sci. 2016, 4672839 (2016).
60. Thakkar, S. &Misra, M. Electrospun polymeric nanofibers: New horizons in drug delivery. Eur. J. Pharm. Sci. 107, 148–167 (2017).
61. Chen, B. Y., Kuo, C. C., Cho, C. J., Liang, F. C. &Jeng, R. J. Novel fluorescent chemosensory filter membranes composed of electrospun nanofibers with ultra-selective and reversible pH and Hg2+ sensing characteristics. Dye. Pigment. 143, 129–142 (2017).
62. Islam, M. S., Ang, B. C., Andriyana, A. &Afifi, A. M. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci. 1, 1248 (2019).
63. Koski, A., Yim, K. &Shivkumar, S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 58, 493–497 (2004).
64. Xiao, S., Shen, M., Ma, H., Guo, R., Zhu, M., Wang, S. &Shi, X. Fabrication of water-stable electrospun polyacrylic acid-based nanofibrous mats for removal of copper (II) ions in aqueous solution. J. Appl. Polym. Sci. 116, 2409–2417 (2010).
65. Zhang, C., Yuan, X., Wu, L., Han, Y. &Sheng, J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41, 423–432 (2005).
66. Fong, H., Chun, I. &Reneker, D. H. Beaded nanofibers formed during electrospinning. Polymer (Guildf). 40, 4585–4592 (1999).
67. Shao, H., Fang, J., Wang, H. &Lin, T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv. 5, 14345–14350 (2015).
68. Zuo, W., Zhu, M., Yang, W., Yu, H., Chen, Y. &Zhang, Y. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci. 45, 704–709 (2005).
69. Yang, G.-Z., Li, H.-P., Yang, J.-H., Wan, J. &Yu, D.-G. Influence of Working Temperature on The Formation of Electrospun Polymer Nanofibers. Nanoscale Res. Lett. 12, 55 (2017).
70. Megelski, S., Stephens, J. S., Chase, D. B. &Rabolt, J. F. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 35, 8456–8466 (2002).
71. Wong, R. &Dolman, S. J. Isothiocyanates from Tosyl Chloride Mediated Decomposition of in Situ Generated Dithiocarbamic Acid Salts. J. Org. Chem. 72, 3969–3971 (2007).
72. Xiang, Y., Tong, A., Jin, P. &Ju, Y. New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity and Sensitivity. Org. Lett. 8, 2863–2866 (2006).
73. Aldred, M. P., Li, C., Zhang, G.-F., Gong, W.-L., Li, A. D. Q., Dai, Y., Ma, D. &Zhu, M.-Q. Fluorescence quenching and enhancement of vitrifiable oligofluorenes end-capped with tetraphenylethene. J. Mater. Chem. 22, 7515–7528 (2012).
74. Zhou, L., Zhang, X., Wang, Q., Lv, Y., Mao, G., Luo, A., Wu, Y., Wu, Y., Zhang, J. &Tan, W. Molecular Engineering of a TBET-Based Two-Photon Fluorescent Probe for Ratiometric Imaging of Living Cells and Tissues. J. Am. Chem. Soc. 136, 9838–9841 (2014).
75. Jiang, Y., Duan, Q., Zheng, G., Yang, L., Zhang, J., Wang, Y., Zhang, H., He, J., Sun, H. &Ho, D. An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg 2+ detection and imaging applications. Analyst 144, 1353–1360 (2019).
76. Yang, Y., Gao, C., Li, B., Xu, L. &Duan, L. A rhodamine-based colorimetric and reversible fluorescent chemosensor for selectively detection of Cu2+ and Hg2+ ions. Sensors Actuators B Chem. 199, 121–126 (2014).
77. Yu, M., Shi, M., Chen, Z., Li, F., Li, X., Gao, Y., Xu, J., Yang, H., Zhou, Z., Yi, T. &Huang, C. Highly Sensitive and Fast Responsive Fluorescence Turn-On Chemodosimeter for Cu2+ and Its Application in Live Cell Imaging. Chem. – A Eur. J. 14, 6892–6900 (2008).
78. Moldoveanu, S. C. Chapter 15 - Pyrolysis of Derivatives of Carbonic Acid With Nitrogenous Functionalities. in (ed. Moldoveanu, S. C. B. T.-P. of O. M. (Second E.) 697–714 (Elsevier, 2019).