簡易檢索 / 詳目顯示

研究生: 林家賢
Lin, Jia-Hsien
論文名稱: 聚氧化乙烯與聚酯類高分子相容性與結晶動力之探討
Miscibility and Crystallization Kinetics in Blends of Two Semi-crystalline Polymers: Poly(ethylene oxide) and Aliphatic Polyesters
指導教授: 吳逸謨
Woo, Eamor. M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 聚酯類高分子相容性作用力球晶成長高分子混掺聚氧化乙烯
外文關鍵詞: spherulite growth, miscibility, polymer blend, interactions, PEO, polyesters
相關次數: 點閱:88下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對poly(ethylene oxide)與一系列聚酯類高分子進行作用力參數與球晶成長速率相關性之探討,其中聚酯類高分子分別由poly(ethylene adipate)到poly(hexamethylene sebacate),CH2/COO比則是由3到7。由於本研究中各系統的玻璃轉移溫度(Tg)皆在-60oC左右,因此以動力學的角度藉由觀察球晶成長速率,對相容性作進一步的探討;克服熔點接近的問題後,再以熱力學觀點延伸對PEO與聚酯類高分子的相容性,其中與PEO相容的聚酯類有poly(ethylene adipate)、poly(propylene adipate)、poly(butylene adipate)和poly(ethylene azelate),CH2/COO比則是3.0~4.5,得到的作用力參數皆呈負值,隨著聚酯類高分子結構上的差異作用力參數的值亦有所不同,可在PEO/poly(propylene adipate)系統中(CH2/COO=3.5),得到一個最低的作用力參數。接著進一步藉由球晶成長速率,對聚酯類高分子結構作相關性的探討,亦可得到與作用力參數相同的趨勢。另一方面此研究亦討論LiClO4與PEO混摻後對結晶動力的影響,球晶成長速率會明顯地抑制,並呈現級數量的下降,而球晶型態則有類似羽毛狀的結構,這說明LiClO4與PEO間確實存有強作用力。而當LiClO4摻入PEO/PVPh,抑制球晶成長更是明顯,並在長時間觀察球晶型態後發現不定型區明顯增多,而為改質PEO電解質提供一個有效的方法。

    Crystalline/crystalline polymer blend systems of poly(ethylene oxide) (PEO) and a homologous series of polyesters, from poly(ethylene adipate) to poly(hexamethylene sebacate), of different CH2/COO ratios (from 3.0 to 7.0) were examined. Correlation between interactions, miscibility, and spherulite growth rate was discussed. Owing to proximity of blend constituents’ Tg’s, the miscibility in the crystalline/crystalline blends was mainly justified by thermodynamic and kinetic evidence extracted from characterization on the PEO crystals grown from mixtures of PEO and polyesters at melt state. By overcoming experimental difficulty in assessing the phase behavior of two crystalline polymers with closely-spaced Tg’s, this work has further extended the range of polyesters that can be miscible with PEO. The interaction parameters (12) for miscible blends of PEO with polyesters [poly(ethylene adipate), poly(propylene adipate), poly(butylene adipate), and poly(ethylene azelate) with CH2/COO=3.0~4.5] are all negative but the values vary with the polyester structures, with a maximum for the blend of PEO/poly(propylene adipate) (CH2/COO=3.5). Furthermore, the values of interactions are apparently dependent on the structures of the polyester constituent in the blends; and miscibility and interaction strength for the miscible PEO/polyester systems correlate in the same trend with the PEO crystal growth rates in the blends. However, the doping distinctly influenced the crystalline domains of LiClO4-doped PEO or LiClO4-doped PEO/PVPh blend system. LiClO4 doping in PEO exerted significant retardation on PEO crystal growth. The growth rates for LiClO4-doped PEO were order-of-magnitude slower than those for the salt-free neat PEO. Dramatic changes in spherulitic patterns were also seen in that feather-like dendritic spherulites are resulted, indicating strong interactions. Introduction of both miscible amorphous PVPh polymer and LiClO4 salt in PEO even more significantly suppressed the crystallizing tendency of PEO, which can potentially be a useful new approach of PEO electrolyte modification.

    總目錄 頁數 中文摘要 I 英文摘要 II 誌謝 IV 總目錄 V 表目錄 VII 圖目錄 VIII 第一章 簡介 1 第二章 原理 9 2-1 高分子的相容性 9 2-2 平衡熔點下降 11 2-3 球晶成長理論 13 第三章 實驗 18 3-1高分子及試藥 18 3-2樣品製備 22 3-3儀器 22 第四章 結果與討論 24 4-1 Poly(ethylene oxide)/Aliphatic Polyesters相容性與摻合系統作用力之研究 24 4-1-1 PEO/PEA兩成份摻合系統 25 4-1-2 PEO/PPA兩成份摻合系統 26 4-1-3 PEO/PBA兩成份摻合系統 27 4-1-4 PEO/PEAz兩成份摻合系統 29 4-1-5 PEO/Polyesters摻合系統中CH2/COO比對作用力參數的影響 30 4-2 PEO球晶成長速率與作用力參數相關性之研究 51 4-3 LiClO4和Poly(4-vinyl phenol)對PEO球晶動力之影響 64 第五章 結論 72 參考文獻 73 自述 77

    1. Paul, D. R.; Newman, S.; Eds. Polymer Blends; Academic Press: New York, 1978; Vols. 1, 2.
    2. Bank, M.; Leffingwell, J.; Thies, C. Macromolecules 1971, 4, 43.
    3. Nishimoto, M.; Keskkula, H.; Paul, D. R. Polymer 1991, 32, 272.
    4. Walsh, D. J.; Higgins, J. S.; Maconndchie Polymer Blends and Mixtures 1985, Mijhoff Publishers.
    5. Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer 1991, 32, 44.
    6. Coleman, M. M.; Moskala, E. J. Polymer 1983, 24, 251.
    7. Varnell, D. F.; Moskala, E. J.; Painter, P. C.; Coleman, M. M. Polym. Eng. Sci. Phys. Ed. 1983, 23, 658.
    8. Eisenberg, A.; Hara, M. Polym. Eng. Sci. 1984, 24, 1306.
    9. Aubin, M.; Bedard, Y.; Morrissette, M. F.; Prudhomme, R. E. J. Polym. Sci. Phys. Ed. 1983, 21, 233.
    10. Rodriguez-Parada, J. M.; Percec, V. Macromolecules 1986, 19, 55.
    11. Ziska, J. J.; Barlow, J. W.; Paul, D. R. Polymer 1981, 22, 918.
    12. Woo, E. M.; Barlow, J. W.; Paul, D. R. Polymer 1985, 26, 763.
    13. Harris, J. E.; Goh, S. H.; Paul, D. R.; Barlow, J. W. J. Appl. Polym. Sci. 1982, 27, 839.
    14. Cruz, C. A.; Paul, D. R.; Barlow, J. W. J. Appl. Polym. Sci. 1979, 24, 2101.
    15. Fernandes, A. C.; Barlow, J. W.; Paul, D. R. J. Appl. Polym. Sci. 1984, 29,1971.
    16. Neo, M. K.; Goh, S. H. Eur. Polym. J. 1982, 27, 927.
    17. Neo, M. K.; Goh, S. H. Polymer 1992, 33, 3203.
    18. Neo, M. K.; Goh, S. H. Polymer Network & Blends 1993, 3, 131.
    19. Low, S. M.; Goh, S. H.; Lee, S. Y. Polymer 1994, 35, 3290.
    20. Woo, E. M.; Chiang, C. P. Polymer 2004, 45, 8415.
    21. Chang, C. S.; Woo, E M.; Lin, J. H. Macromol. Chem. Phys. 2006 Accepted.
    22. Penning, J. P.; John Manley, R. St. Macromolecules 1996, 29, 77.
    23. Martuscelli, E.; Ganetti, M.; Vicini, L.; Seves, A. Polymer 1982, 23, 331.
    24. Moskala, E. J.; Varnell, D. F.; Coleman, M. M. Macromolecules 1996, 26, 228.
    25. Avella, M.; Martuscelli, E. Polymer 1988, 29, 1731.
    26. Chen, H. L.; Wang, S. F. Polymer 2000, 41, 5157.
    27. Qiu, Z.; Ikehara, T.; Nishi, T. Polymer 2003, 44, 2799.
    28. Nakafuku, C.; Sakoda, M. Polym. J. 1993, 25, 909.
    29. Nakafuku, C. Polym. J. 1996, 28, 568.
    30. Nijenhuis, A. J.; Colstee, E.; Grijpma, D. W.; Pennings, A. J. Polymer 2000, 37, 5849.
    31. Qiu, Z.; Ikehara, T.; Nishi, T. Polymer 2003, 44, 310.
    32. Fenton, D. E.; Parker, J. M.; Wright, P.V. Polymer 1973, 14, 589.
    33. Weiczorek, W.; Such, K.; Chung, S. H.; Stevens, J. R. J. Phys. Chem. 1994, 98, 9047.
    34. Weiczorek, W.; Florjanczyk, Z.; Stevens, J. R. Electrochemica Acta 1995, 40, 2251.
    35. Weiczorek, W.; Zalewska, A.; Raducha, D.; Florjanczyk, Z.; Stevens, J. R. Macromolecules 1996, 29, 143.
    36. Chovina, C.; Frere, Y.; Gramain, P. J. Polym. Sci. Part A: Polym Chem 1997, 35, 2719.
    37. Mertens, I. J. A.; Wubbenhorst, M.; Oosterbaan, W. D.; Jenneskens, L. W.; van Turnhout, J. Macromolecules 1999, 32, 3314.
    38. Jannasch, P. Macromolecules 2000, 33, 8604.
    39. Jannasch, P. Electrochemica Acta 2001, 46, 1641.
    40. Lauter, U.; Meyer, W.H.; Wegner, G. Macromolecules 1997, 30, 2092.
    41. Lauter, U.; Meyer, W. H.; Enkelmann, V.; Wegner, G. Macromol. Chem. 1998, 199, 2129.
    42. Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I.; Hannay, N. B. editor.Treatise on solid state chemistry. New York: Plenum Press;1976.
    43. Hoffman, J. D. Polymer 1983, 24, 3.
    44. Sperling, L. H. Introduction to physical polymer science, 3rd ed., New York: Wiley, 2001
    45. Di Lorenzo, M. L. Prog. Polym. Sci. 2003, 28, 663.
    46. Alfonso, G. C.; Russel, T.P. Macromolecules 1986, 19, 1143.
    47. Martuscelli, E.; Silvestre, C.; Gismondi, C. Makromol. Chem. 1985, 186, 2161.
    48. Amelino, L.; Martuscelli, E.; Sellitti, C.; Silvestre, C. Polymer 1990, 31, 1051.
    49. Martuscelli, E.; Sellitti, C.; Silvestre, C. Makromol. Chem. Rapid Commun. 1985, 6, 125.
    50. Liu, L. Z.; Chu, B.; Penning, J. P.; Manley, R.S. J. Macromol. Sci. Phys. B 1998, 37, 485.
    51. Chiu, C.-Y.; Chen, H.-W.; Kuo, S.-W.; Chang, F.-C. Macromolecules 2004, 37, 8424.

    下載圖示 校內:2007-07-19公開
    校外:2008-07-19公開
    QR CODE