簡易檢索 / 詳目顯示

研究生: 洪健雄
Hong, Jiang-Shiung
論文名稱: 次波長狹縫下增強穿透之表面電漿子效應
Enhanced transmission in subwavelength apertures due to surface plasmon effect
指導教授: 陳寬任
Chen, Kuan-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 64
外文關鍵詞: Enhanced transmission, Dipole effect, Metallic gratings, Surface plasmon, Subwavelength aperture
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

     Due to the diffraction theory, light transmission through a subwavelength hole is very low, but by excitation of surface plasmon, it could be overcome. Hole arrays, and surface corrugation on metal shows the enhanced transmission in this way. A similar result was done in microwave regime.

     Our work uses Finite-Difference Method to observe the enhanced transmission phenomenon with subwavelength apertures. With a normal incident wave of which the wavelength is about 10 times larger than the slit, the result is consistent with the previous work.

     However, in our simulation, what the surprising result is that we found the enhanced transmission is not mainly due to the surface plasmon effects but by the dipole/quadrapole field emission. The physical mechanism of the enhanced transmission provides us a more fundamental explanation which is different from previous work.

    1Introduction…………………………………..………………………1 2 Transmission Light through small holes...............................................4 2.1 Theory of Diffraction by Small Holes .......................................4 2.2 Extraordinary optical transmission............................................5 2.2.1 Strong Enhancement of transmitted light due to the hole array ......................................................................6 2.2.2 Theory of Enhanced Transmission Resonances through narrow slits on metallic gratings...................................7 2.3 Transmission Light through subwavelength aperture with metallic surface corrugations.....................................................9 2.3.1 Beaming light from a subwavelength aperture............10 2.3.2 Highly Directional Emission from a single subwavelength aperture surrounded by surface corrugation ...................................................................12 2-4 Enhanced transmission of microwave radiation .....................15 3Simulation Model .............................................................................17 3.1 Simulation System ...................................................................17 3.2 Finite-Difference Time-Domain Method.................................18 3.2.1 Introduction to Maxwell’s Equation ............................19 3.2.2 Reduction to two dimensions.......................................21 3.2.3 The Yee Algorithm.......................................................21 3.2.4 Finite-Difference Expressions for Maxwell’s Equations ......................................................................................23 3.3 Boundary Conditions ...............................................................26 3.3.1 Absorbing Boundary Conditions .................................27 3.3.2 Periodic Boundary Conditions.....................................27 3.4 Dielectric constant of metal .....................................................29 4 Simulation results ............................................................................32 4.1 Simulation system....................................................................32 4.2 Simulation result......................................................................33 4.3 Physical Process.....................................................................36 4.3.1 Transmission Phenomenon.......................................36 4.3.2 Beaming light..............................................................44 4.4 Dipole/quadrapole effect..........................................................52 4.4.1 Quadrapole vs. Dipole radiation.................................52 4.4.2 Quadrapole Radiation vs. Suface plasmon resonances.....58 4.5 Conclusion ...............................................................................61 5 Sumarry.............................................................................................62

    [1] H. A. Beth, Phys. Rev. 66, 163 (1944).
    [2] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff,
    Nature, 391, 667 (1998).
    [3] J. A. Porto, F. J. Garcia- Vidal, J. B. Pendry, Phys. Rev. Lett., 83,
    2845 (1999).
    [4] S. Collin, F. Pardo, R. Teissier, J. –L. Pelouard, Phys. Rev. B, 63,
    033107 (2001).
    [5] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno,
    F. J. Garcia-Vidal, T. W. Ebbesen, Science, 297, 820 (2002)
    [6] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, T. W.
    Ebbesen, Phys. Rev. Lett., 90, 167401 (2003)
    [7] S. Sena Akarca-Biyikli, Irfan Bulu, Ekmel Ozbay, App. Phys. Lett.,
    85, 1098 (2004)

    下載圖示 校內:2008-07-07公開
    校外:2008-07-07公開
    QR CODE