| 研究生: |
何雅筑 Ho, Ya-Chu |
|---|---|
| 論文名稱: |
兩種商用除磷材料去除湖庫水中磷酸鹽之可行性評估 Feasibility Assessment of Removing Phosphate from Lakes and Reservoirs using Two Commercial Products |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | Bayoxide® E33 、Lewatit® MonoPlus M600 、磷酸鹽 、吸附 、脫附 、循環壽命 、針鐵礦 、離子交換樹脂 、湖庫水 |
| 外文關鍵詞: | Bayoxide® E33, Lewatit® MonoPlus M600, phosphorus, phosphate, adsorption, desorption, cycle life, goethite, ion exchange resin, lake and reservoir |
| 相關次數: | 點閱:52 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磷是水中藻類生長的主要營養來源之一,即便其在水中的濃度非常低,也會導致促使藻類增生及水體的優養化。作為一種沒有已知替代品的不可再生資源,磷回收和再循環的需求變得十分重要。為了有效控制湖庫水中藻類繁殖過多的情況並回收磷酸鹽,本研究利用兩種商用除磷材料,為由德國LANXESS公司所提供之成分為針鐵礦(α-FeOOH)組成之顆粒狀吸附劑Bayoxide® E33 (簡稱E33)和成分為苯乙烯二乙烯苯(styrene divinylbenzene)組成之離子交換樹脂Lewatit® MonoPlus M600 (簡稱M600),探討其吸附湖庫水中低濃度磷酸鹽的可行性。
吸附實驗結果顯示,縮小E33顆粒大小能減少吸附磷酸鹽平衡所需時間,加速其吸附速率。動力實驗結果顯示,100至200mesh粒徑之E33在五天內達到平衡,而M600則在一天內達到平衡,其吸附平衡容量分別為3.55mg-P/g與6.12mg-P/g,動力模型上分別較為符合Elovich模型與偽一階模型。平衡實驗顯示兩種除磷材料對磷酸鹽的去除量隨著添加的吸附劑量增加而減少。且兩種吸附劑在弱鹼性(pH值為8.5±0.1)的情況下,皆較符合Freundlich isotherm model。
為了瞭解兩種除磷材料之循環壽命,研究中將兩種除磷材料進行三次的吸附脫附循環實驗,結果顯示在去離子水中,E33和M600在吸附與脫附上皆有很好的表現,脫附更是每次皆高達95%以上。相對的在環境水體中,E33在吸附磷酸鹽有更佳的去除率,但脫附回收率則較於去離子水來的低;M600則在吸附與脫附中皆表現較差。
本研究並進行了迷你管柱實驗模擬現地運用可行性。結果顯示E33在最初能夠有效去除環境水體中的磷酸鹽,當接觸45,000BV後,便達到飽和吸附;而M600由於選擇性較低,因此在最初就無法有效去除環境水體中的磷酸鹽。
This study evaluates the feasibility of two commercial phosphorus removal materials, Bayoxide® E33 (goethite-based) and Lewatit® MonoPlus M600 (ion exchange resin), previously proven effective in removing high-concentration phosphates, for the removal of low-concentration phosphates from lake and reservoir water. The assessment involved batch kinetics, sorption isotherms, mini-column tests, and material characterization.
Adsorption experiments revealed that reducing the particle size of E33 enhances its adsorption rate, but M600 reached equilibrium faster than both sizes of E33. M600 exhibited a higher adsorption capacity compared to E33. The kinetic models indicated that E33 conformed to the Elovich model, whereas M600 fit the pseudo-first-order model. In the equilibrium experiment, both adsorbents were better represented by the Freundlich isotherm model under weakly alkaline conditions.
After three adsorption-desorption cycles, results showed that both E33 and M600 performed well in deionized water for adsorption and desorption. However, in natural water, E33 exhibited a higher phosphate removal efficiency, while M600 performed poorly in both adsorption and desorption.
Mini-column tests indicated that E33 effectively removed phosphates from natural water initially, with saturation occurring after 45,000 BV. Conversely, M600, due to its lower selectivity to phosphate, failed to effectively remove phosphates from natural water.
Abdoli, S., Asgari Lajayer, B., Dehghanian, Z., Bagheri, N., Vafaei, A. H., Chamani, M., Rani, S., Lin, Z., Shu, W., & Price, G. (2024). A Review of the Efficiency of Phosphorus Removal and Recovery from Wastewater by Physicochemical and Biological Processes: Challenges and Opportunities. Water, 16(17), 2507.
Ajmal, Z., Muhmood, A., Usman, M., Kizito, S., Lu, J., Dong, R., & Wu, S. (2018). Phosphate removal from aqueous solution using iron oxides: adsorption, desorption and regeneration characteristics. Journal of colloid and interface science, 528, 145-155.
Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 100733.
Awual, M. R., Shenashen, M., Jyo, A., Shiwaku, H., & Yaita, T. (2014). Preparing of novel fibrous ligand exchange adsorbent for rapid column-mode trace phosphate removal from water. Journal of Industrial and Engineering Chemistry, 20(5), 2840-2847.
Bassal, F., Roques, J., & Gautheron, C. (2020). Neon diffusion in goethite, α-FeO (OH): a theoretical multi-scale study. Physics and Chemistry of Minerals, 47, 1-14.
Bektas, T. E., & Eren, F. (2019). Batch and column studies for removal of sulphate from real wastewater using ion exchange resin. Sakarya University Journal of Science, 23(5), 810-816.
Bektaş, T. E., Uğurluoğlu, B. K., & Tan, B. (2021). Phosphate removal by Ion exchange in batch mode. Water Practice & Technology, 16(4), 1343-1354.
Biela, R., & Kučera, T. (2016). Efficacy of sorption materials for nickel, iron and manganese removal from water. Procedia Engineering, 162, 56-63.
Boyer, T. H., Persaud, A., Banerjee, P., & Palomino, P. (2011). Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water. Water research, 45(16), 4803-4814.
Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., & Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science, 6, 8.
Carlson, R. E. (1977). A trophic state index for lakes 1. Limnology and oceanography, 22(2), 361-369.
Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37(24), 5701-5710.
Chiban, M., Soudani, A., Sinan, F., & Persin, M. (2011). Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant. Colloids and Surfaces B: Biointerfaces, 82(2), 267-276.
Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., & Hirotsu, T. (2006). Phosphate adsorption on synthetic goethite and akaganeite. Journal of colloid and interface science, 298(2), 602-608.
Clifford, D. A. (1990). Ion exchange and inorganic adsorption. MCGRAW-HILL, INC.,(USA). 1194, 1990.
Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences, and uses (Vol. 664). Wiley-vch Weinheim.
Dabrowski, A., Hubicki, Z., Podkościelny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2), 91-106.
Devis, J., James, R., & Lackie, J. (1978). Surface ionization and complexation at the oxide/water interface. J. Colloid Interface Sci, 63(3), 480.
Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
Geelhoed, J. S., Hiemstra, T., & Van Riemsdijk, W. H. (1997). Phosphate and sulfate adsorption on goethite: single anion and competitive adsorption. Geochimica et cosmochimica acta, 61(12), 2389-2396.
Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1994). Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science & Technology, 28(1), 38-46.
Guan, X.-H., Shang, C., & Chen, G.-H. (2006). Competitive adsorption of organic matter with phosphate on aluminum hydroxide. Journal of colloid and interface science, 296(1), 51-58.
Hayes, K. F. (1987). Equilibrium, spectroscopic, and kinetic studies of ion adsorption at the oxide/aqueous interface. Stanford University.
Helfferich, F. G. (1995). Ion exchange. Courier Corporation.
Hongshao, Z., & Stanforth, R. (2001). Competitive adsorption of phosphate and arsenate on goethite. Environmental Science & Technology, 35(24), 4753-4757.
Hussein, F. B., & Mayer, B. K. (2022). Fixed-bed column study of phosphate adsorption using immobilized phosphate-binding protein. Chemosphere, 295, 133908.
Jeon, J. H., Sola, A. B. C., Lee, J.-Y., Koduru, J. R., & Jyothi, R. K. (2022). Separation of vanadium and tungsten from synthetic and spent catalyst leach solutions using an ion-exchange resin. RSC advances, 12(6), 3635-3645.
Juntarasakul, O., Yonezu, K., Kawamoto, D., Ohashi, H., Kobayashi, Y., Sugiyama, T., Watanabe, K., & Yokoyama, T. (2020). Chemical state of Fe3+ in a Fe3+-type cation exchange resin for the removal and recovery of phosphate ions and the adsorption mechanism of phosphate ion to the resin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605, 125314.
Kim, J., Li, W., Philips, B. L., & Grey, C. P. (2011). Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a 31 P NMR study. Energy & Environmental Science, 4(10), 4298-4305.
Köse, T. E., & Kıvanç, B. (2011). Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chemical Engineering Journal, 178, 34-39.
Krishnan, K. A., & Haridas, A. (2008). Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. Journal of Hazardous Materials, 152(2), 527-535.
Kumar, P. S., Ejerssa, W. W., Wegener, C. C., Korving, L., Dugulan, A. I., Temmink, H., van Loosdrecht, M. C., & Witkamp, G.-J. (2018). Understanding and improving the reusability of phosphate adsorbents for wastewater effluent polishing. Water research, 145, 365-374.
Kumar, P. S., Korving, L., van Loosdrecht, M. C., & Witkamp, G.-J. (2019). Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Research X, 4, 100029.
Kunaschk, M., Schmalz, V., Dietrich, N., Dittmar, T., & Worch, E. (2015). Novel regeneration method for phosphate loaded granular ferric (hydr) oxide–a contribution to phosphorus recycling. Water research, 71, 219-226.
Lalley, J., Han, C., Mohan, G. R., Dionysiou, D. D., Speth, T. F., Garland, J., & Nadagouda, M. N. (2015). Phosphate removal using modified Bayoxide® E33 adsorption media. Environmental Science: Water Research & Technology, 1(1), 96-107.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
Lappalainen, H. K., Kerminen, V.-M., Petäjä, T., Kurten, T., Baklanov, A., Shvidenko, A., Bäck, J., Vihma, T., Alekseychik, P., & Arnold, S. (2016). Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the Northern Eurasian region. Atmospheric Chemistry and Physics Discussions, 2016, 1-107.
Li, X., Kuang, Y., Chen, J., & Wu, D. (2020). Competitive adsorption of phosphate and dissolved organic carbon on lanthanum modified zeolite. Journal of colloid and interface science, 574, 197-206.
Lin, T.-F., & Nazaroff, W. W. (1996). Transport and sorption of water vapor in activated carbon. Journal of Environmental Engineering, 122(3), 176-182.
Matilainen, A., Lindqvist, N., Korhonen, S., & Tuhkanen, T. (2002). Removal of NOM in the different stages of the water treatment process. Environment international, 28(6), 457-465.
Mouelhi, M., Giraudet, S., Amrane, A., & Hamrouni, B. (2016). Competitive adsorption of fluoride and natural organic matter onto activated alumina. Environmental technology, 37(18), 2326-2336.
Murphy, K. R., Butler, K. D., Spencer, R. G., Stedmon, C. A., Boehme, J. R., & Aiken, G. R. (2010). Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environmental Science & Technology, 44(24), 9405-9412.
Mustafa, S., Zaman, M. I., & Khan, S. (2008). Temperature effect on the mechanism of phosphate anions sorption by β-MnO2. Chemical Engineering Journal, 141(1-3), 51-57.
Oguz, E. (2005). Sorption of phosphate from solid/liquid interface by fly ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262(1-3), 113-117.
Pelekani, C., Newcombe, G., Snoeyink, V. L., Hepplewhite, C., Assemi, S., & Beckett, R. (1999). Characterization of natural organic matter using high performance size exclusion chromatography. Environmental Science & Technology, 33(16), 2807-2813.
Peng, Y.-z., Wang, X.-l., & Li, B.-k. (2006). Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination, 189(1-3), 155-164.
Qiu, H., Liang, C., Yu, J., Zhang, Q., Song, M., & Chen, F. (2017). Preferable phosphate sequestration by nano-La (III)(hydr) oxides modified wheat straw with excellent properties in regeneration. Chemical Engineering Journal, 315, 345-354.
Rahnemaie, R., Hiemstra, T., & van Riemsdijk, W. H. (2007). Carbonate adsorption on goethite in competition with phosphate. Journal of colloid and interface science, 315(2), 415-425.
Reddy, K., Kadlec, R., Flaig, E., & Gale, P. (1999). Phosphorus retention in streams and wetlands: a review. Critical reviews in environmental science and technology, 29(1), 83-146.
Ruzhitskaya, O., & Gogina, E. (2017). Methods for removing of phosphates from wastewater. MATEC Web of Conferences,
Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E., & Orihel, D. M. (2016). Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology, 50(17), 8923-8929.
Sharpley, A. (1999). Agricultural phosphorus, water quality, and poultry production: are they compatible? Poultry science, 78(5), 660-673.
Shindo, D., Oikawa, T., Shindo, D., & Oikawa, T. (2002). Energy dispersive x-ray spectroscopy. Analytical electron microscopy for materials science, 81-102.
Spears, B. M., Carvalho, L., Perkins, R., Kirika, A., & Paterson, D. M. (2007). Sediment phosphorus cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release. Shallow Lakes in a Changing World: Proceedings of the 5th International Symposium on Shallow Lakes, held at Dalfsen, The Netherlands, 5–9 June 2005,
Sperlich, A. (2010). Phosphate adsorption onto granular ferric hydroxide (GFH) for wastewater reuse.
USEPA. (1986). Quality Criteria For Water 1986. Washington, D. C., U. S: Environmental Protection Agency report EPA 440/5-86/001
Usman, M. O., Aturagaba, G., Ntale, M., & Nyakairu, G. W. (2022). A review of adsorption techniques for removal of phosphates from wastewater. Water Science & Technology, 86(12), 3113-3132.
Wang, J., & Guo, X. (2020a). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279.
Wang, J., & Guo, X. (2020b). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 122156.
Withers, P. J., Elser, J. J., Hilton, J., Ohtake, H., Schipper, W. J., & Van Dijk, K. C. (2015). Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability. Green Chemistry, 17(4), 2087-2099.
Xie, Q., Li, Y., Lv, Z., Zhou, H., Yang, X., Chen, J., & Guo, H. (2017). Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101. Scientific reports, 7(1), 3316.
Yang, S., Jin, P., Wang, X., Zhang, Q., & Chen, X. (2016). Phosphate recovery through adsorption assisted precipitation using novel precipitation material developed from building waste: behavior and mechanism. Chemical Engineering Journal, 292, 246-254.
Zhi, Y., Zhang, C., Hjorth, R., Baun, A., Duckworth, O. W., Call, D. F., Knappe, D. R., Jones, J. L., & Grieger, K. (2020). Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments. Environment international, 145, 106115.
台灣自來水股份有限公司第七區管理處, 國. (2022). 東港溪原水生物前處理操作與水庫水質相關性監測及其操作效益評估委託專業服務
張鈞維. (2006). 以淨水廠污泥及鐵氧化物吸附劑去除水庫水體含磷之研究 國立成功大學
曾浩然. (2009). 兩種吸附劑去除水中磷酸鹽之研究 國立成功大學
經濟部水利署第七河川分署. (2018). 水系介紹——東港溪
劉芩喬. (2004). 氫氧化鐵與離子交換樹脂去除砷之動力、平衡與傳輸 國立成功大學
鄭仲凱. (2003). 氫氧化鐵吸附水中砷之動力與平衡研究 國立成功大學
環境部. 環境水質監測數據
環境部. (2020). 卡爾森指標(Carlson's TSI)