簡易檢索 / 詳目顯示

研究生: 張豪碩
Chang, Hao-Shuo
論文名稱: 白蝦Lv14-3-3於白點症病毒感染時之功能性探討
The role of Lv14-3-3 in Litopenaeus vannamei after WSSV infection
指導教授: 王涵青
Wang, Han-Ching
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 66
中文關鍵詞: 白蝦14-3-3白點症病毒
外文關鍵詞: Litopenaeus vannamei, 14-3-3, WSSV
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蝦類養殖產業在亞洲是重要的經濟活動,但是由於病毒性疾病的影響,在過去20年內造成嚴重的經濟損失;其中又以白點症病毒影響最為嚴重。為了能夠解決病毒性疾病對養蝦產業所造成的威脅,了解宿主和病原體之間的關係是相當重要的。Wang等科學家利用二維蛋白質電泳技術分析感染前後草蝦體內蛋白質表現量的變化。許多蛋白質在病毒感染後,表現量上有顯著差異,其中14-3-3蛋白,在兩種蝦類病毒(白點症病毒和套拉症病毒)感染狀況下,表現量均有上升的現象。14-3-3存在於所有的真核生物當中,為一保守性高的分子。在生物體內會結合形成雙體調控許多訊號傳遞路徑。本研究中主要研究白蝦的14-3-3分子在白點症病毒感染時所扮演的功能。從白蝦選殖出來的14-3-3的分子開放轉譯區由741個核苷酸所組成,可轉譯出246個胺基酸。演化分析結果顯示三種對蝦類的14-3-3在無脊椎動物中可以獨立成為一個次亞群。Lv14-3-3在白蝦所有組織均有表現,而根據間接免疫螢光染色,Lv14-3-3主要存在於細胞質當中,細胞核則有少量Lv14-3-3存在。在白點症病毒感染之下,Lv14-3-3的基因和蛋白質表現量均有上升的現象。Lv14-3-3上具有可以被其他分子磷酸化的磷酸位,我們觀察到在病毒感染後,Ser-58磷酸位磷酸化的現象有上升的趨勢;Ser-58磷酸位可以被蛋白質激酶(protein kinase)磷酸化。科學家發現,14-3-3分子磷酸化與否會造成14-3-3構型改變,也間接改變14-3-3對於其他分子的親和性。因此在白點症病毒感染的情況下, 蛋白質激酶將Lv14-3-3磷酸化,會使得Lv14-3-3的親和性改變,驅使細胞走向受到病毒感染時的生理反應。若更進一步的研究相關機制將可釐清Lv14-3-3在受到病毒感染之時,在宿主體內所扮演的角色,以及是否和白點症病毒的複製有關。在詳細了解機制後便有機會可以設計出抗病毒的藥物來降低疾病所造成的損失。

    In Asia, shrimp culture is an important industry. Over the last two decades, however, outbreaks of viral diseases have led to devastating financial loss. One such disease, white spot syndrome (WSS), is caused by the white spot syndrome virus (WSSV). In order to develop disease prevention strategies it is important to understand host-pathogen interactions. These are poorly known in WSSV. One line of research focuses on shrimp proteins that respond to infection. These proteins are identified, selected and their function is investigated. Previous research using two-dimensional gel electrophoresis (2-DE) found that one such protein, 14-3-3, was up-regulated in two shrimp viral diseases (WSS and Taura syndrome). This is a highly conserved protein, found in all eukaryotic organisms. It functions as a helical dimer for the regulation of many signal transduction pathways. In this study, the 14-3-3 unique to Litopenaeus vannamei was identified and its function during WSSV infection was explored. This protein, named Lv14-3-3, is comprised of a 741-bp open reading frame encoding a polypeptide of 246 amino acids. Phylogenetic analysis found that all 3 known shrimp 14-3-3s formed a distinct subclade within the invertebrate clade. Lv14-3-3 mRNA expression was found in most shrimp tissue. Indirect immunofluorescence showed that it was primarily found in the cytoplasm of the cell, rather than in nuclei. After WSSV infection, mRNA and protein expression levels increased. Lv14-3-3 was activated through phosphorylation by protein kinase, previous studies showed that protein kinase phosphorylated 14-3-3 alters subsequent signal responses because of a change of binding affinity between 14-3-3 and its ligands. It is therefore possible that WSSV triggers a signal transduction mechanism. Lv14-3-3 therefore acts as an adapter protein which triggers subsequent responses during WSS infection. Further research could identify specific 14-3-3 host responses and identify key host cellular factors which support the WSSV lifecycle within host cells. Such cellular factors offer hope for the design of anti-WSSV drugs.

    目錄 誌謝 3 中文摘要 4 Abstract 6 1. 研究背景 10 1.1 水產養殖現況 10 1.2台灣水產養殖的現況 10 1.3白點症病毒及其相關研究 11 1.4 目前14-3-3 蛋白研究現況 13 2. 研究目的 20 3. 研究方法 21 3.1 實驗蝦隻來源、病毒感染源 21 3.2 基因結構之分析 21 3.2.1 RNA 萃取方法 21 3.2.2 反轉錄聚合酶鏈鎖反應 22 3.2.3 白蝦14-3-3基因選殖 24 3.2.4 Lv14-3-3基因於白蝦體內表現之組織特異性分析 25 3.3 Lv14-3-3蛋白質層面之分析 26 3.3.1 Lv14-3-3與不同物種之胺基酸序列比較 26 3.3.2 Lv14-3-3 與不同物種14-3-3之演化樹分析 27 3.3.3 西方轉印法分析Lv14-3-3分子 27 3.4 蝦血球細胞間接免疫螢光分析 28 4. 實驗結果 30 4.1白蝦14-3-3基因結構之組成 30 4.2 白蝦14-3-3與不同物種之胺基酸序列比較 31 4.3 白蝦14-3-3與不同物種之14-3-3演化樹分析 31 4.4 Lv14-3-3基因及蛋白質於白蝦體內表現之組織特異性 32 4.5 蝦血球細胞間接免疫螢光反應分析Lv14-3-3於細胞內 分佈位置 32 4.6 白點症病毒感染後Lv14-3-3基因、蛋白質表現量及磷酸化分析 33 5. 討論 35 6. 參考文獻 45 7. 實驗圖表 52 表一、本研究中所使用之引子對 52 表二、本研究中所使用之抗體 53 圖一、Lv14-3-3核苷酸以及胺基酸序列 55 圖二、不同物種之14-3-3胺基酸序列比較 56 圖三、不同物種14-3-3 Zeta異構形之演化分析 57 圖四、Lv14-3-3在白蝦不同組織中的基因表現量 58 圖五、Lv14-3-3蛋白質於白蝦不同組織之表現量 59 圖六、蝦血球細胞間接免疫螢光分析Lv14-3-3 60 圖七、Lv14-3-3分別在PBS注射組和白點症病毒注射組中於胃組織在不同時間點的基因表現量 61 圖八、西方墨點法分析白蝦在PBS和白點症病毒注射組在注射後不同時間點之Lv14-3-3蛋白質表現量及磷酸化的情形 64 圖九、Lv14-3-3於白點症病毒感染時所扮演角色之假說。A圖為PBS注射組,B圖為白點症病毒注射組。 66

    Aitken A. (2002) Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant Mol Biol. 50:993-1010.

    Aitken A. (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol. 16:162-172.

    Bae J, Hsu SY, Leo CP, Zell K, Hsueh AJ. (2001) Underphosphorylated BAD interacts with diverse antiapoptotic Bcl-2 family proteins to regulate apoptosis. Apoptosis. 6:319-330.

    Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME, Yaffe MB. (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol. 156:817-828.

    Braselmann S, McCormick F. (1995) Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J. 14:4839-4848

    Chongsatja PO, Bourchookarn A, Lo CF, Thongboonkerd V, Krittanai C. (2007) Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection. Proteomics. 19:3592-3601.

    Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, Williams LT. (1994) Activation of Raf-1 by 14-3-3 proteins. Nature. 371:612-614.

    Fanger GR, Widmann C, Porter AC, Sather S, Johnson GL, Vaillancourt RR. (1998) 14-3-3 protein interact with specific MEK kinase. J Biol Chem. 273: 3476-3484.

    Fujii K, Tanabe Y, Uchikawa H, Kobayashi K, Kubota H, Takanashi J, Kohno Y. (2006) 14-3-3 protein detection in the cerebrospinal fluid of patients with influenza-associated encephalopathy. J Child Neurol. 21:562-565.

    Fu H, Subramanian RR, Masters SC. (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 40:617-647.

    Gong W, Russell M, Suzuki K, Riabowol K. (2006) Subcellμlar targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regμlates p21WAF1 expression. Mol Cell Biol. 26:2947-54.

    Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B. (1997) 14-3-3 sigma is a p53-regμlated inhibitor of G2/M progression. Mol Cell. 1:3-11.

    Ichimura T, Isobe T, Okuyama T, Yamauchi T, Fujisawa H. (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+,calmodμlin-dependent protein kinase II. FEBS Lett. 219:79-82.

    Johnson KN, van Hulten MC, Barnes AC. (2008) "Vaccination" of shrimp against viral pathogens: phenomenology and underlying mechanisms. Vaccine. 26:4885-4892.

    Kakiuchi K, Yamauchi Y, Taoka M, Iwago M, Fujita T, Ito T, Song SY, Sakai A, Isobe T, Ichimura T. (2007) Proteomic analysis of in vivo 14-3-3 interactions in the yeast Saccharomyces cerevisiae. Biochemistry. 46:7781-7792.

    Katsuma S, Mita K, Shimada T. (2007) ERK- and JNK-dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. J Virol. 81:13700-13709.

    Leu JH, Wang HC, Kou GH, Lo CF. (2008) Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Dev Comp Immunol. 32:476-486.

    Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. (2009) Whispovirus. Curr Top Microbiol Immunol. 328:197-227.

    Lo CF, Ho CH, Chen CH, Liu KF, Chiu YL, Yeh PY, Peng SE, Hsu HE, Liu HC, Chang CF, Su MS, Wang CH, Kou GH . (1997) Detection and tissue tropism of white spot syndrome bacμlovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs. Dis Aquat Org. 30:53–72.

    van Loo G, Schotte P, van Gurp M, Demol H, Hoorelbeke B, Gevaert K, Rodriguez I, Ruiz-Carrillo A, Vandekerckhove J, Declercq W, Beyaert R, Vandenabeele P. (2001) Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ. 8:1136-1142.

    Mochly-Rosen D, Khaner H, Lopez J, Smith BL. (1991) Intracellular receptors for activated protein kinase C. Identification of a binding site for the enzyme. Biochem J. 299:853-861.

    Muslin AJ, Tanner JW, Allen PM, Shaw AS. (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 84:889-897.

    OIE (World Organization For Animal Health, Formerly Office International des Epizootires). (2003a) Manual of diagnostic tests for aquatic animals. 4th edn.OIE, Paris.
    Ohman T, Lietzén N, Välimäki E, Melchjorsen J, Matikainen S, Nyman TA. (2010) Cytosolic RNA recognition pathway activates 14-3-3 protein mediated signaling and caspase-dependent disruption of cytokeratin network in human keratinocytes. J Proteome Res. 9:1549-1564.

    Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H.ca-Worms H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 277:1501-1505.

    Pradelli L A, Be´ne´teau M, Ricci JE. (2010) Mitochondrial control of caspase-dependent and -independent cell death. Cell. Mol. Life Sci. 67:1589-1597.

    Powell DW, Rane MJ, Chen Q, Singh S, McLeish KR. (2002) Identification of 14-3-3zeta as a protein kinase B/Akt substrate. Biol Chem. 277:21639-21642.

    Pongsomboon S, Tang S, Boonda S, Aoki T, Hirono I, Yasuike M, Tassanakajon A. (2008) Differentially expressed genes in Penaeus monodon hemocytes following infection with yellow head virus. BMB Rep.41:670-677.

    Rommel C, Radziwill G, Lovrić J, Noeldeke J, Heinicke T, Jones D, Aitken A, Moelling K. (1996) Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene. 12:609-619.

    Robinson K, Jones D, Patel Y, Martin H, Madrazo J, Martin S, Howell S, Elmore M, Finnen MJ, Aitken A. (1994). Mechanism of inhibition of protein kinase C by 14-3-3 isoforms. 14-3-3 isoforms do not have phospholipase A2 activity. Biochem J. 299 :853-861.

    Rosenquist M, Sehnke P, Ferl RJ, Sommarin M, Larsson C. (2000) Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity? J Mol Evol. 51:446-458.

    Rout N, Kumar S, Jaganmohan S, Murugan V. (2007) DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine. 25:2778-2786.

    Roy S, McPherson RA, Apolloni A, Yan J, Lane A, Clyde-Smith J, Hancock JF. (1998) 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro and in vivo. Mol Cell Biol. 18:3947-3955.

    Stomski FC, Dottore M, Winnall W, Guthridge MA, Woodcock J, Bagley CJ, Thomas DT, Andrews RK, Berndt MC, Lopez AF. (1999) Identification of a 14-3-3 binding sequence in the common beta chain of the granμlocyte-macrophage colony-stimμlating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 receptors that is serine-phosphorylated by GM-CSF. Blood. 94:1933-1942.

    Sunayama J, Tsuruta F, Masuyama N, Gotoh Y. (2005) JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol. 170:295-304.

    Tabunoki H, Shimada T, Banno Y, Sato R, Kajiwara H, Mita K, Satoh J. (2008) Identification of Bombyx mori 14-3-3 orthologs and the interactor Hsp60. Neurosci Res. 61:271-280.
    Toker A, Ellis CA, Sellers LA, Aitken A. (1990) Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein. Eur J Biochem. 191:421-429.

    Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y. (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 23:1889-1899.

    Wang CS, Tang KFJ, Kou GH, Chen SN. (1997) Light and electron microscopic evidence of white spot disease in the giant tiger shrimp, Penaeus monodon (Fabricius), and the kuruma shrimp, Penaeus japonicus (Bate), cultured in Taiwan. J Fish Dis 20:323–331.

    Wang HC, Wang HC, Leu JH, Kou GH, Wang AH, Lo CF. (2007) Protein expression profiling of the shrimp cellμlar response to white spot syndrome virus infection. Dev Comp Immunol. 31:672-686.

    van Heusden GP. (2005) 14-3-3 proteins: regulators of numerous eukaryotic proteins. IUBMB Life. 57:623-629.

    van Heusden GP. (2009) 14-3-3 Proteins: insights from genome-wide studies in yeast. Genomics. 94:287-293.

    van Hemert MJ, van Heusden GP, Steensma HY. (2006) Yeast 14-3-3 proteins. Yeast. 18:889-95.

    van Hemert MJ, Steensma HY, van Heusden GP. (2001) 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays. 10:936-946.

    Yaffe MB. (2002) How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513:53-7.

    Xiao W, Yang Y, Weng Q, Lin T, Yuan M, Yang K, Pang Y. (2009) The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells. Virology. 391:83-89.

    Zhou J, Shao Z, Kerkela R, Ichijo H, Muslin AJ, Pombo C, Force T. Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death. Mol Cell Biol. 29:4167-76.

    Zhang L, Chen J, Zhang L, Chen J, Fu H.. (1999) Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc Natl Acad Sci . 96:8511-8515.
    Zhu F, Du H, Miao ZG, Quan HZ, Xu ZR. (2009) Protection of Procambarus clarkii against white spot syndrome virus using inactivated WSSV. Fish Shellfish Immunol. 26:685-690.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE