| 研究生: |
陳昶瑋 Chen, Chang-Wei |
|---|---|
| 論文名稱: |
微波電漿化學氣相沉積法成長之奈米鑽石及其應用於射頻微機電電容型開關 Microwave Plasma CVD Nanodiamond and Its Application to RF MEMS Capacitive Switches |
| 指導教授: |
曾永華
Tzeng, Yon-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 射頻微機電 、電容型開關 、鑽石 、充電現象 |
| 外文關鍵詞: | RF MEMS, capacitive switches, diamond, charging effect |
| 相關次數: | 點閱:67 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用微波電漿化學氣相沉積法成長之奈米鑽石膜應用於射頻微機電電容型開關,此開關最大可靠度問題為充電現象,在不斷的操作下開關容易引起下拉電壓偏移或沾黏現象,我們利用奈米鑽石膜當作此開關之介電層來改善電容型開關之充電現象,透過改變成長鑽石的製程參數來控制奈米鑽石膜中的石墨相比例,達到降低奈米鑽石之直流電阻值,使介電層內之充電電荷能夠快速的排出,進而增加開關之可靠度,我們藉由拉曼光譜、SEM、AFM等儀器對奈米鑽石做材料分析,期望找到最適合電容型開關使用之奈米鑽石膜,並使用MIM電容結構對奈米鑽石與傳統介電質氮化矽做直流量測、充放電量測等電性分析,證實奈米鑽石確實有我們希望得到電性。
我們設計出四種不同結構之電容型開關並使用C-V量測分析四種結構的下拉電壓大小與電容比等特性,另外針對使用氮化矽和奈米鑽石作為介電層時開關時的驅動特性與充電現象進行探討。
In this research, we deposit nanodiamond films by Microwave Plasma Chemical Vapor Deposition. Nanodiamond used as dielectric layer of RF MEMS capacitive switches. The major problem need to be solved is charging effect, and it also limit the life time of switches. After operation many times, switches would induce pull-in voltage shift and stiction problem. We use nanodiamond films as dielectric material to prevent the charging effect of switches. We controlled graphite phase concentration of nanodiamond films by using different growth conditions to lower dc resistivity. It can allow charges to escape from dielectric layers quickly and increase the reliability of switches. In order to find the best growth condition of nanodiamond films for switches, we analyzed nanodiamond films by some equipment, including Raman spectrum, Scanning Electron Microscope and Atomic Force Microscope..We fabricated MIM capacitors by Si3N4 and nanodiamond to perform DC measurement and transient current measurements.
We designed four structures of RF MEMS capacitive switches and analyzed their pull-in voltage and capacitance ratio by C-V measurement. Additionally, we discussed about actuation properties and charging effect of switches with Si3N4 and nanodiamond as dielectric, respectively.
[1] 曾聖翔,射頻微機電切換器(RF MEMS Switch)之簡介.
[2] Yole, Micronews, issue n60, pp.15, July 2007.
[3] G. Cusmai, et al., "A simple lumped electrical model for an RF MEMS switch considering lossy substrate effects," Sensors and Actuators a-Physical, vol. 123-24, pp. 515-521, Sep 23 2005.
[4] 翁敏航,林育德,陳永祥,戴寶通,電容式橋型射頻微機電切換器之設計,奈米通訊第十二期第一卷.
[5] Zhenyin Yang, Daniel J. Lichtenwalner, Arthur S. Morris, III, Senior Member,IEEE,Jacqueline Krim, and Angus I. Kingon, Member, IEEE, Comparison of Au and Au–Ni Alloys as Contact Materials for MEMS Switches, Journal of Microelectromechanical Systems, vol. 18, NO. 2, APRIL 2009.
[6] J. Kusterer, et al., "Bi-stable micro actuator based on stress engineered nano-diamond," Diamond and Related Materials, vol. 15, pp. 773-776, Apr-Aug 2006.
[7] P. Schmid, et al., "Diamond switch using new thermal actuation principle," Diamond and Related Materials, vol. 12, pp. 418-421, Mar-Jul 2003.
[8] F. M. Guo, et al., "Study on low voltage actuated MEMS rf capacitive switches,"Sensors and Actuators a-Physical, vol. 108, pp. 128-133, Nov 15 2003.
[9] X. Rottenberg , P. Czarnecki , H. A. C. Tilmans , W. De Raedt and I. De Wolf , Multi-physics simulation and reliability analysis for RF-MEMS devices, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2008.
[10] H. J. De Los Santos, et al., "RF MEMS for ubiquitous wireless connectivity: Part 1 - Fabrication," Ieee Microwave Magazine, vol. 5, pp. 36-49, Dec 2004.
[11] A. Witvrouw, et al., "Materials issues in the processing, the operation and the reliability of MEMS," Microelectronic Engineering, vol. 76, pp. 245-257, Oct 2004.
[12] M. Fernandez-Bolanos, et al., "RF MEMS capacitive switch on semi-suspended CPW using low-loss high-resistivity silicon substrate," Microelectronic Engineering, vol. 85, pp. 1039-1042, May-Jun 2008.
[13] J. Martinez, et al., "Design, simulation, and fabrication of a MEMs switched superconducting microstrip hairpin filter," Physica C-Superconductivity and Its Applications, vol. 466, pp. 101-105, Nov 1 2007.
[14] Y. Zhang, et al., "Development of hafnium oxynitride dielectrics for radio-frequency-
microelectromechanical system capacitive switches," Sensors and Actuators a-Physical, vol.
139, pp. 337-342, Sep 12 2007.
[15] J. Y. Park, et al., "Monolithically integrated micromachined RF MEMS capacitive switches," Sensors and Actuators a-Physical, vol. 89, pp. 88-94, Mar 20 2001.
[16] T. Seki, et al., "Development of a large-force low-loss metal-contact RF MEMS switch," Sensors and Actuators a-Physical, vol. 132, pp. 683-688, Nov 20 2006.
[17] M. Adamschik, et al., "Diamond microwave micro relay," Diamond and Related Materials, vol.11, pp. 672-676, Mar-Jun 2002.
[18] J. Kusterer, et al., "Bi-stable micro actuator based on stress engineered nano-diamond," Diamond and Related Materials, vol. 15, pp. 773-776, Apr-Aug 2006.
[19] S.Balachandran, J.Kusterer, D.Maeir, M.Dipalo, T.Weller, E.Kohn, Electronic Systems, High power nanocrystalline diamond RF MEMS, IEEE International Conference on, pp. 1-8, 13-14, May 2008.
[20] Y. T. Song, et al., "A corrugated bridge of low residual stress for RF-MEMS switch," Sensors and Actuators a-Physical, vol. 135, pp. 818-826, Apr 15 2007.
[21] H. X. Zhang, et al., "Design of a novel bulk micro-machined RF MEMS switch," International Journal of Nonlinear Sciences and Numerical Simulation, vol. 3, pp. 369-374, 2002.
[22] Y. L. Lai and C. H. Lin, "Investigation of structures of microwave microelectromechanical-
system switches by Taguchi method," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 6539-6545, Oct 2007.
[23] Y. L. Lai and Y. H. Chen, "Characteristics of radio-frequency Microelectrome-chanical-system switches for communication systems (vol 46, pg 2820, 2007)," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 3710-3710, Jun 2007.
[24] Y. L. Lai and L. H. Chang, "Design of electrostatically actuated MEMS switches," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 313, pp. 469-473, Feb 1 2008.
[25] Saias, et al., "An above IC MEMS RF switch," Ieee Journal of Solid-State Circuits, vol. 38, pp. 2318-2324, Dec 2003.
[26] Ching-Liang Dai, Hsuan-Jung Peng, Mao-Chen Liu, Chyan-Chyi Wu and Lung-Jieh Yang ,Design and Fabrication of RF MEMS Switch by the CMOS Process,Tamkang Journal of Science and Engineering, Vol. 8, No 3, pp.197-202, 2005.
[27] P. Czarnecki, X. Rottenberg, P. Soussan. Nolmans. Ekkels. Muller,H.A.C. Tilmans, W. De Raedt, R. Puers, L. Marchand and I. De Wolf, NEW INSIGHTS INTO CHARGING IN CAPACITIVE RF MEMS SWITCHES, IEEE CFP08RPS-CDR 46th Annual International Reliability Physics Symposium, Phoenix, 2008.
[28] C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S.Eshelman, Z. Yao, J. Brank, M. Eberly, Lifetime characterization of capacitive RF MEMS switches, in 2001 IEEE MMT-S Int. Microwave Symp. Dig., vol.1, pp. 227-230, May 2001.
[29] Z. Peng, et al., "Superposition model for dielectric charging of RF MEMS capacitive switches under bipolar control-voltage waveforms," Ieee Transactions on Microwave Theory and Techniques, vol. 55, pp. 2911-2918, Dec 2007.
[30] Hiroaki Yamazaki, Tamio Ikehashi, Tatsuya Ohguro, Etsuji Ogawa,Kenji Kojima, Kazunari Ishimaru, Hidemi Ishiuchi, Sensors and Actuators A 139, pp.233–236, 2007.
[31] Chuck Goldsmith, David Forehand, Derek Scarbrough, Zheng Peng, Cris Palego, James Hwang, Jason Clevenger, Understanding and Improving Longevity in RF MEMS Capacitive Switches,Reliability, Packaging, Testing,and Characterization of MEMS/MOEMS VII, edited by Allyson L. Hartzell, Rajeshuni Ramesham, Proc. of SPIE Vol. 6884, 2008.
[32] X. B. Yuan, et al., "Acceleration of dielectric charging in RF MEMS capacitive switches," Ieee Transactions on Device and Materials Reliability, vol. 6, pp. 556-563, Dec 2006.
[33] X. B. Yuan, et al., "A transient SPICE model for dielectric-charging effects, in RF MEMS capacitive switches," Ieee Transactions on Electron Devices, vol. 53, pp. 2640-2648, Oct 2006.
[34] M. Lamhamdi, et al., "Voltage and temperature effect on dielectric charging for RF-MEMS capacitive switches reliability investigation," Microelectronics Reliability, vol. 48, pp. 1248-1252, Aug-Sep 2008.
[35] M. Lamhamdi, et al., "Charging-effects in RF capacitive switches influence of insulating layers composition," Microelectronics Reliability, vol. 46, pp. 1700-1704, Sep-Nov 2006.
[36] M. Lamhamdi, L.Boudou, P.Pons, J.Guastavino, A. Belarni, M. Dilhan, Y.Segui and R. Plana, Si3N4 THIN FILMS PROPRERTIES FOR RF-MEMS RELIABILITY INVESTIGATION, Solid-state Sensors, Actuators and Microsystems Conference, 2007,TRANSDUCERS 2007, International, pp. 579-582.
[37] A. Belarni, et al., "Kelvin probe microscopy for reliability investigation of RF-MEMS capacitive switches," Microelectronics Reliability, vol. 48, pp. 1232-1236, Aug-Sep 2008.
[38] J. R. Webster, et al., "Performance of amorphous diamond RF MEMS capacitive switch," Electronics Letters, vol. 40, pp. 43-44, Jan 8 2004.
[39] Joolien Chee, Ratnakar Karru, Timothy S. Fisher, and Dimitrios Peroulis, DC-65 GHz Characterization of Nanocrystalline Diamond Leaky Film Reliable Switches ,Gallium Arsenide and Other Semiconductor Application Symposium, 2005, EGAAS 2005, Europe, pp.581- 584.
[40] www.e6cvd.com
[41] Y Y. Gurbuz, et al., "Diamond semiconductor technology for RF device applications," Solid-State Electronics, vol. 49, pp. 1055-1070, Jul 2005.
[42] Hiromichi Yoshikawa, Cedric Morel, Yoshinori Koga, Synthesis of nanocrystalline diamond films using microwave plasma CVD, Diamond and Related Materials, pp.1588-1591, 2001
[43] M. Daenen, et al., "Seeding, growth and characterization of nanocrystalline diamond films on various substrates," Physica Status Solidi a-Applications and Materials Science, vol. 203, pp. 3005-3010, Sep 2006.
[44] Masato Miyake, Akihisa Ogino, Masaaki Nagatsu, Characteristics of nano-crystalline diamond films prepared in Ar/H2/CH4 microwave plasma, Thin Solid Films, pp.4258–4261, 2007.
[45] T. G. McCauley, et al., "Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma," Applied Physics Letters, vol. 73, pp. 1646-1648, Sep 21 1998.
[46] K. Subramanian, et al., "Nanodiamond planar lateral field emission diode," Diamond and Related Materials, vol. 14, pp. 2099-2104, Nov-Dec 2005.
[47] A. V. Sumant, et al., "Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications," Mrs Bulletin, vol. 35, pp. 281-288, Apr 2010.
[48] O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa , K. Haenen, R.B. Jackman , Growth, electronic properties and applications of nanodiamond, Diamond & Related Materials, pp.1080–1088, 2008.
[49] Chia-Fu Chen, Sheng Hsiung Chen, Electrical properties of boron-doped diamond films after annealing treatment, Diamond and Related Materials, pp.451-455, 1995.
[50] R. Erz, W. Diitter, K. Jung, H. Ehrhardt, Investigation of boron and hydrogen concentrations in p-type diamond films by infrared spectroscopy,R. Erz, W. Diitter, K. Jung, H. Ehrhardt, Diamond and Related Materials, pp.469-472, 1995.
[51] Y. H. Chen, et al., "Defect structure and electron field-emission properties of boron-doped diamond films," Applied Physics Letters, vol. 75, pp. 2857-2859, Nov 1 1999.
[52] Shigeharu Morooka , Terumi Fukui, Kiyohiko Semoto , Toshiki Tsubota , Takeyasu Saito , Katsuki Kusakabe , Hideaki Maeda , Yasunori Hayashi , Tanemasa Asano, Diamond and Related Materials 8, pp. 42–47, 1999.
[53] R. Lecher, J. Wagner, F. Fuchs, M. Maier, P. Gonon, P. Koidl, Optical and electrical characterization of boron-doped diamond films, Diamond and Related Materials 4, pp. 678-683, 1995.
[54] S. Waidmann , K. Bartsch , I. Endler , F. Fontaine, B. Arnold, M. Knupfer, A. Leonhardt , J. Fink, Electron energy-loss spectroscopy in transmission of undoped and doped diamond films, Carbon 37, pp. 823–827, 1999.
[55] Chi-Lin Chen, Chau-Shu Chen, Juh-Tzeng Lue, Field emission characteristic studies of chemical vapor deposited diamond films, Solid-State Electronics 44, pp.1733-1741, 2000.
[56] Vescan A et al, IEEE Electron Dev Lett, 1997.
[57] Gurbuz Y et al, IEEE Trans Power Electron, 2005.
[58] Yasar Gurbuz, Onur Esame, Ibrahim Tekin, Weng P. Kang, Jimmy L.Davidson , Diamond semiconductor technology for RF device applications ,Solid-State Electronics 49, pp.1055–1070, 2005.
[59] Takatoshi Yamada , Hiromichi Yoshikawa, Hiroshi Uetsuka, Somu Kumaragurubaran, Norio Tokuda, Shin-ichi Shikata, Cycle of two-step etching process using ICP for diamond MEMS applications, Diamond & Related Materials 16, pp.996–999, 2007.
[60] T. Shibata, et al., "Micromachining of diamond film for MEMS applications," Journal of Microelectromechanical Systems, vol. 9, pp. 47-51, Mar 2000.