| 研究生: |
林鼎傑 Lin, Ding-Jie |
|---|---|
| 論文名稱: |
最小能量控制律於槓桿式勁度可控質量阻尼器系統之實驗驗證 Experimental Verification of the Least Energy Method for LSCMD System |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 228 |
| 中文關鍵詞: | 半主動控制 、槓桿式勁度可控質量阻尼器 、最小能量法控制律 、PLC控制系統 、Motion Card控制系統 |
| 外文關鍵詞: | Semi-Active Control, Leverage-type Stiffness Controllable Mass Damper, Least-Input Energy Method, PLC control system, Motion Card control system |
| 相關次數: | 點閱:160 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
被動調諧質量阻尼器(TMD)乃實務廣為應用之振動控制裝置,但TMD對於頻率之去調諧效應十分敏感,且往往有衝程過大之疑慮;為同時減低衝程的需求並維持等值之控制成效,可藉由主動控制理論施加額外之控制力於TMD而為混合型質量阻尼器,或經由適當之控制機制調整TMD之特性而成為半主動質量阻尼器。本文利用槓桿式勁度可控質量阻尼器(Leverage-type Stiffness Controllable Mass Damper,簡稱LSCMD)作為減振控制機構,以最小能量法控制律作為控制基礎,透過振動台實驗驗證其對於高樓結構之控制成效,由實驗結果與數值模擬均可以展現出LSCMD搭配最小能量法控制律對於高樓結構受地表加速度影響下的的反應抑制成效。此外,本文亦研究PLC控制系統與Motion Card控制系統對於實驗的控制成效,由實驗成果比較能夠發現,Motion Card控制系統可以有效改善PLC控制時控制效果不佳的結果,獲得較理想的控制成效。
The conventional tuned mass damper (TMD) is an effective control device for vibration suppression subjected to wind or earthquake, but it is very sensitive to the fluctuation in tuning of the designed frequency to the natural frequency of the main system. A novel Leverage-type Stiffness Controllable Mass Damper (LSCMD) adopted with the Least Energy Method (LEM) control law is equipped on a long-period shaking table specimen in this study to improve the performance of the conventional TMD by reducing its required stroke. By utilizing a simple leverage mechanism, the stiffness of the LSCMD can be easily controlled by adjusting the position of the pivot point on the leverage arm. In order to determine the on-line pivot position of the LSCMD, the proposed LEM control law is employed by adjusting the pivot position instantaneously with required feedback measurements to improve its control performance of passive mode. Shaking table experiments are conducted to verify the proposed LEM control law. In addition, both PLC and motion-card configurations are compared in this study to ensure the expected control performance. The experimental results show that the motion-card configuration is a better control hardware setup and can deploy the LEM control law accurately.
1. Asami, T., Wakasono, T., Kameoka, K., Hasegawa, M., Sekiguchi, H., “Optimal Design of Dynamic Absorbers for A System Subjected to Random Excitation”, JSME International Joural, Vol. 34, No. 2, pp. 218-226, (1991).
2. Chey, M. H., Chase, J. G., “Semi-active tuned mass damper building systems: Design”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 2, pp. 119-139,(2010).
3. Chey, M. H., Chase, J. G., “Semi-active tuned mass damper building systems: Application”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 1, pp. 69-89,(2010).
4. Chu, S.Y., Lin, C.C., Chung, L.L., Chang, C.C., Lu, K.H., “Optimal Performance of Discrete-time Direct Output-feedback Structural Control with Delayed Control Forces”, Structrual Control and Health Monitoring, Vol. 15, No. 1, pp. 22-42, (2008).
5. Chu, S.Y., Soong, T.T., Reinhorn, A.M., “Active, Hybrid and Semi-active Structural Control: A Design and Implementation Handbook” ,John Wiley & Sons, Inc., New York, (2005).
6. Crandall, S.H., Mark, W.D., “Random Vibration in Mechanical Systems”, Academic Press, New York, pp.55-101, (1973).
7. Den Hartog, J.P., “Mechanical Vibrations, 4th edn”, McGraw Hill, New York, (1956).
8. Frahm, H., “Device for Damping Vibration of Bodies”, US Patent, No. 989958, (1909).
9. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao J.T.P., “Structural Control: Past, Present, and Future”, Journal of Engineering Mechanics (ASCE), Vol. 123, No. 9, pp. 897-971, (1997).
10. Hrovat, D., Barak, P., Rabins, M., “Semi-Active versus Passive or Active Tuned Mass Dampers For Structural Control”, Journal of Engineering Mechanics (ASCE), Vol. 109, No. 3, pp. 691-705, (1983).
11. Lin, C.C., Hu, C.M., Wang, J.F., Hu, R.Y., “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, Vol. 17, No. 3, pp. 367-376, (1994).
12. Lu, L.Y., Hsu, C.C., Yeh, S.W., “A Leverage-type Semi-active Isolation System for Seismic Structures in Near-fault Regions (in Chinese)” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 21, No. 3, pp. 319-338,(2009).
13. Lu, L.Y., Chu, S.Y., Yeh, S.W., “Modeling and experimental verification of a variable-stiffness isolation system using leverage mechanism.” Journal of Vibration and Control, published on-line, DOI: 10.1177/1077546310395976.
14. Lu, L.Y., Chu, S.Y., Yeh, S.W., Chung, L.L. “Seismic test of least input energy control with velocity feedback for variable-stiffness isolation systems.” Journal of Sound and Vibration, Vol. 331, issue. 4, pp. 767-784, (2012)
15. Lu, L.Y., Lin, T.K., Yeh, S.W., “Experiment and Analysis of A Leverage-type Stiffness Controllable Isolation System for Seismic Engineering” Earthquake Engineering and Structural Dynamics, Vol. 39, No. 15, 1711-1736, (2010).
16. Lu, L.Y., Lin, G.L., Kuo, T.C., “Stiffness controllable isolation system for near-fault seismic isolation” Earthquake Structures, Vol. 30, No. 3, 747-765,(2008).
17. Lu, L.Y., Lee, T.Y., Yeh, S.W., “Theory and experimental study for sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, published on-line, DOI: 10.1002/eqe.1106.
18. McNamara, R. J., ”Tuned Mass Dampers for Buildings”, Journal of the Structural Division (ASCE), Vol. 103, No. 9, pp. 1785-1798, (1977).
19. Nagarajaiah, S., “Hardening Duffing oscillator attenuation using a nonlinear TMD, a semi-active TMD and multiple TMD” S Journal of Sound and Vibration, Vol.322, No.4, pp. 674-686, (2013)
20. Palazzo, B., Petti, L., De Ligio, M., “Response of Base Isolated Systems Equipped with Tuned Mass Dampers to Random Excitations”, Journal of Structural Control, Vol. 4, No. 1, pp. 9-22, (1997).
21. Sack, R.L., Patten, W.N., “Semi-active Hydraulic Structural Control”, Proceedings of the International Workshop on Structural Control, Honolulu, Hawaii, USC Publication CE-9311, pp. 417-431, (1993).
22. Soong, T.T., “Active Structural Control: Theory and Practice”, John Wiley & Sons, Inc., New York, (1990).
23. Soong, T.T., Grigoriu, M., “Random Vibration of Mechanical and Structural Systems”, PTR Prentice Hall Englewood Cliffs, New Jersey, (1993).
24. Symans, M.D., Constanionu, M.C., “Semi-active Control Systems for Seismic Protection of Structures: A State-of-the-art Review”, Engineering Structures, Vol. 21, No. 6, pp. 469-487, (1999).
25. Uang, C.M., Bertero, V.V., “Evaluation of Seismic Energy in Structures” , Earthquake Engineering & Structural Dynamics., Vol. 19, No. 1, pp. 77.90, (1990).
26. Varadarajan, N., Nagarajaiah, S., “Wind Response Control of Building with Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition/Hilbert Transform”, Journal of Engineering Mechanics (ASCE), Vol. 130, No. 4, pp. 451-458, (2004).
27. Warburton G.B., “Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters”, Earthquake Engineering and Structural Dynamics, Vol. 10, No. 3, pp.381-401, (1982).
28. Wiesner, K. B., ”Tuned Mass Dampers to Reduce Building Wind Motion”, Convention and Exposition (ASCE), Boston, Mass., April 2-6, (1979).
29. Wong, K.K.F., “Seismic Energy Dissipation of Inelastic Structures with Tuned Mass Dampers”, Journal of Engineering Mechanics, Vol. 134, No. 2 , pp. 163.172, (2008).
30. Xu, K., Igusa, T., “Dynamic Characteristics of Multiple Substructures with Closely Spaced Frequencies”, Earthquake Engineering and Structural Dynamics, Vol. 21, No. 12, pp. 1059-1070, (1992).
31. Zhang, Y., Wilfred D., “Protecting Base-Isolated Structures from Near-Field Ground Motion by Tuned Interaction Damper”, Journal of Engineering Mechanics (ASCE), Vol. 128, No. 3, pp. 287-295, (2002).
32. 王哲夫,「被動調諧質量阻尼器之最佳設計暨應用」,國立中興大學土木工程研究所,碩士論文(1992)。
33. 王健,「變曲率滑動隔震防制近斷層震波之實驗與分析」,國立高雄第一科技大學營建工程研究所,碩士論文(2006)。
34. 吳政彥,「變曲率滑動隔震防制之實驗與分析」,國立高雄第一科技大學營建工程研究所,碩士論文(2004)。
35. 李文誠,「勁度可控式質量阻尼器之減振研究」,國立成功大學土木工程研究所,碩士論文 (2009)。
36. 林建宏,「狀態空間法於隔減震結構分析上之應用」,國立高雄第一科技大學營建工程研究所,碩士論文(2002)。
37. 侯佳玟,「最佳化時間延遲補償之擬混合型調諧質量阻尼器於結構振動控制之研究」,國立成功大學土木工程研究所,碩士論文(2007)。
38. 許朝畯,「槓桿式勁度可控隔震系統之實驗與分析」,國立高雄第一科技大學營建工程研究所,碩士論文 (2007)。
39. 陳昱如,「結構主動控制之時間延遲效應與對策」,國立中興大學土木工程研究所,碩士論文(1995)。
40. 彭致華,「槓桿式勁度可控質量阻尼器於結構減振之應用與實驗驗證」,國立成功大學土木工程研究所,碩士論文(2010)。
41. 葉士瑋,「最小輸入能量法於勁度可控式隔震系統之應用研究」,國立高雄第一科技大學營建工程研究所,碩士論文(2009)。
42. 盧煉元、林錦隆,中華民國發明專利,專利名稱:可控式隔震系統。專利字號:發明第I308610號,專利證書日期:98年4月11日,專利期限:民國2009年4月11日至2025年10月27日止。
43. 盧煉元、施明祥、張婉妮,「近斷層震波對滑動式隔震結構之影響評估」,結構工程,第十八卷,第四期,23-48頁(2003)。
44. 盧煉元、郭子敬、林錦隆,「勁度可控式滑動隔震系統」,中國土木水利工程學刊,第十八卷,第二期,265-278頁 ( 2006 )。
45. 簡誌德,「最小輸入能量法於半主動質量阻尼器系統之應用研究」,國立成功大學土木工程研究所,碩士論文 ( 2011 )
46. 張洵,「模糊控制律於勁度可控式隔震系統之實驗研究」,國立高雄第一科技大學營建工程研究所,碩士論文 ( 2012 )
47. 洪俊宏,「設備於建物中之耐震策略分析與實驗」,國立高雄第一科技大學營建工程研究所,碩士論文 ( 2011 )
48. National Instruments,「Motion Control」,美商國家儀器公司,規格資料表( 2013 )
49. Alka, Y. Pisal. , “DYNAMIC RESPONSE OF STRUCTURE WITH SEMI-ACTIVE TUNED MASS FRICTION DAMPER”, International Journal of Structural and Civil Engineering Research, Vol. 2, No. 1 ,(2013)
50. Lu, L.Y., “Predictive control of seismic structures with semi-active friction dampers”, Earthquake Engineering and Structural Dynamics, Vol.33, No. 5, pp.647-668. ,(2004)
51. 林鼎傑,「槓桿式勁度可控質量阻尼器搭配PLC控制系統實驗」,國立成功大學土木工程研究所,實驗報告書( 2013 )
52. 林鼎傑,「槓桿式勁度可控質量阻尼器搭配Motion Card控制系統實驗」,國立成功大學土木工程研究所,實驗報告書( 2014 )