| 研究生: |
廖婉庭 Liao, Wang-Ting |
|---|---|
| 論文名稱: |
新型螺旋流道應用於圓柱結構質子交換膜燃料電池之三維數值分析與實驗研究 Experimental and 3-D Numerical Analysis of Proton Exchange Membrane Fuel Cell with Spiral Flow Channels |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 燃料電池 、螺旋流道 、流道幾何設計 |
| 外文關鍵詞: | PEMFC, Spiral channel, Geometric design |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出以三維之新型螺旋流道做為燃料電池的流道模型,並以數值模擬及實驗進行研究驗證。蓋因當前燃料電池的流道設計多以矩形流道為主,諸如平行、蛇行或指叉形等,具有直角轉彎阻抗太大的缺失,而相較於直管,彎管中產生之二次流可確實增進熱傳與質傳等效應。又矩形外型之燃料電池需多螺絲的鎖固方式,也有應力分佈不均勻以及組裝鎖緊困難之處。因此,本研究設計一外型為圓形並由五條流道組成之螺旋形流道,先以順時針方向流入中心,再以逆時針方向由中心流出,總反應面積為25cm2。
經由數值模擬,螺旋彎管可持續的維持或甚至增強二次流之產生;又入出口流道為間隔方式排列,導致兩流道間產生極大的壓降,以上設計皆加強了燃料的擴散效率。平滑的流道亦減少了壓阻的影響。而出口流道寬度縮減的設計,使得燃料即使在幾乎被消耗完的出口流道中,還能維持其流動速度,更有助於燃料的輸送與排水效率。於實驗部分,圓柱結構燃料電池透過壓應力測試證實可得到較均勻的應力場分佈,而圓柱外型上下端板直接迫緊的鎖固方式,亦有助於提升組裝過程中的方便性以及安全性。由以上之改良設計,與現有常用之蛇行流道相比,螺旋形流道燃料電池之性能提昇有12%之多,模擬與實驗間的誤差約在10%以內,兩者結果堪稱吻合。
此外,針對螺旋流道流場部分,本研究以簡易共軛梯度法建立最佳化運算系統,利用最佳化方法找出最佳化參數,改善螺旋流道入口流量分配不甚均勻的問題,使燃料電池之性能表現約提升6%。由以上之研究,螺旋流道確實為增進質子交換膜燃料電池的良好設計。
A three - dimensional model of proton exchange membrane fuel cell
(PEMFC) with special design of spiral channels is developed experimentally and numerically in this research. Due to the secondary vortices effect which can enhance heat and mass transfer in curved pipes, spiral channel patterns are used here to improve on the geometry of present fuel cell models. The spiral channels are built with five inlet and outlet channels, the overall reaction area is 2500 mm2. Through the simulation results, the flow direction of spiral channels can maintain or even strengthen secondary flow and improve the mass transfer in PEMFC. The smooth channels can widely decrease the drag force and enhance the efficiency of PEMFC. Comparing with inlet channels, the contraction design of outlet channel widths can prevent from a great quantity of water flooding. According to the above statements, it is found that the current densities of spiral channel PEMFC are 12.5% higher than serpentine channel PEMFC. In addition, the numerical predictions were reasonably in agreement with the experimental results. The errors between numerical and experimental results are 6.7-8.1%. The result reveals that the spiral design of this paper is a useful design to enhance the efficiency of PEMFC. In addition, the simplified conjugate - gradient method (SCGM) has been applied to optimize the uniformity of flow filed which can be one of methods to improve the efficiency of fuel cell. The five channel widths of spiral channel are optimized through SCGM to uniformize the flow field. The result reveals that the current densities of PEMFC through optimal search are 5.1%-7.3% higher than original ones.
[1] Grove, W.R., “On Voltaic Series and the Combination of Gases by Platinum”, Philosophical Magazine and Journal of Science Vol.14, pp.127-130, 1839.
[2] Blomen, L.J.M.J. and Mugerwa, M.N., “Fuel Cell Systems”, Plenum Press, New York, pp.19-21, 1993.
[3] Larminie, J. and Dicks, A., “Fuel Cell Systems Explained”, John Wiley, New York, pp.1-418, 2000.
[4] Bard, A.J. and Faulkner, L.R., “Electrochemical Methods - Fundamentals and Applications”, John Wiley, New York, 2001.
[5] Bernardi, D.M. and Verbrugge, M.W., “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte”, AIChE Journal Vol.37, pp.1151-1163, 1991.
[6] Bernardi, D.M. and Verbrugge, M.W., “A Mathematical Model of the Solid - Polymer - Electrolyte Fuel Cells”, Journal of The Electrochemical Society Vol.139, pp.2477-2491, 1992.
[7] Springer, T.E., Zawodzinski, T.A. and Gottesfeld, S., “Polymer Electrolyte Fuel Cell Model”, Journal of The Electrochemical Society Vol.138, pp.2334-2342, 1991.
[8] Springer, T.E., Wilson, M.S. and Gottesfeld, S., “Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells”, Journal of The Electrochemical Society Vol.140, pp.3513-3526, 1993.
[9] Gurau, V., Barbir, F. and Liu, H., “An Analytical Solution of a Half - Cell Model for PEM Fuel Cells”, Journal of The Electrochemical Society Vol.147, pp.2468-2477, 2000.
[10] Djilali, N. and Lu, D., “Influence of heat transfer on gas and water transport in fuel cells”, International Journal of Thermal Sciences Vol.41, pp.29-40, 2002.
[11] Yan, W.M., Chen, F., Wu, H.Y., Soong, C.Y. and Chu, H.S., “Analysis of thermal and water management with temperature - dependent diffusion effects in membrane of proton exchange membrane fuel cells” Journal of Power Sources Vol.129, pp.127-137, 2004. [12] Fuller, T.F. and Newman, J., “Water and Thermal Management in Solid - Polymer - Electrolyte Fuel Cells”, Journal of the Electrochemical Society Vol.140, pp.1218-1225, 1993.
[13] Nguyen, T.V. and White, R.E., “A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells”, Journal of the Electrochemical Society Vol.140, pp.2178-2186, 1993.
[14] Singh, D., Lu, D.M. and Djilali, N., “A two-dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells”, International Journal of Engineering Science Vol.37, pp.431-452, 1999.
[15] Modica, E. and Antonucci, V., “Influence of flow field design on the performance of a direct methanol fuel cell”, Journal of Power Sources Vol.91, pp.202-209, 2000.
[16] Siegel, N.P., Ellis, M.W., Nelson, D.J. and von Spakovsky, M.R., “Single domain PEMFC model based on agglomerate catalyst geometry”, Journal of Power Sources Vol.115, pp.81-89, 2003.
[17] Sui, P.C. and Djilali, N., “Analysis of coupled electron and mass transport in the gas diffusion layer of a PEM fuel cell”, Journal of Power Sources Vol.161, pp.294-300, 2006.
[18] Zhou, B., Huang, W., Zong, Y. and Sobiesiak, A., “Water and pressure effects on a single PEM fuel cell”, Journal of Power Sources Vol.155, pp.190-202, 2006.
[19] Berning, T. and Djilali, N., “Three - dimensional computational analysis of transport phenomena in a PEM fuel cell - a parametric study”, Journal of Power Sources Vol.124, pp.440-452, 2003.
[20] Kumar, A. and Reddy, R.G., “Effect of the channel dimensions and shape in the flow field distributor on the performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources Vol.113, pp.11-18. 2003.
[21] Cha, S.W., O’Hayre, R., Saitom, Y. and Prinz, F.B., “The scaling behavior of flow patterns : a model investigation, Journal of Power Sources Vol.134, pp.57-71, 2004.
[22] Shimpalee, S., Greenway, S. and Van Zee, J.W., “The impact of channel path length on PEMFC flow-field design”, Journal of Power Sources Vol.160, pp.398-406, 2006.
[23] Yan, W.M., Li, H.Y. and Tsai, W.C., “Three - Dimensional Analysis of PEMFCs with Different Flow Channel Designs”, Journal of the Electrochemical Society Vol.153, pp.A1984-A1991, 2006.
[24] Sungho, L., Heeseok, J., Byungki, A., Taewon, L. and Youngjin, S., “Parametric study of the channel design at the bipolar plate in PEMFC performances”, International Journal of Hydrogen Energy Vol.33, pp.5691-5696, 2008.
[25] Wang, C.T., Hu, Y.C. and Zheng, P.L., “Novel biometric flow slab design for improvement of PEMFC performance”, Applied Energy Vol.87, pp.1366-1375, 2010.
[26] Dean, W.R., “Note on the motion of fluid in a curved pipe”, Philosophical Magazine Vol.7, pp.208-223, 1927.
[27] Hille, P., Vehrenkamp, R. and Schulz-Dubois, E.O., “The development and structure of primary and secondary flow in a curved square duct”, Journal of Fluid Mechanics Vol.151, pp.219-241, 1984.
[28] Thangam, S. and Hur, N., “Laminar secondary flows in curved rectangular ducts”, Journal of Fluid Mechanics Vol.217, pp.421-440, 1990.
[29] Chandratilleke, T.T. and Nursubyakto, “Numerical prediction of secondary flow and convection heat transfer in externally heated curved rectangular ducts”, International Journal of Thermal Sciences Vol.42, pp.1842-1850, 2002.
[30] Schönfeld, F. and Hardt, S., “Simulation of Helical Flows in Microchannels”, AIChE Journal Vol.50, pp.771-778, 2004.
[31] Naphon, P. and Suwagrai, J., “Effect of curvature ratios on the heat transfer and flow developments in the horizontal spirally coiled tubes”, Heat and Mass Transfer Vol.50, pp.444-451, 2006.
[32] Yang, R. and Chiang, F.P., “AN EXPERIMENTAL STUDY OF HEAT TRANSFER IN CURVED PIPE WITH PERIODICALLY VARYING CURVATURE FOR APPLICATION IN SOLAR COLLECTORS AND HEAT EXCHANGERS”, AIAA, pp.154-160, 2000.
[33] Yamaguchi, Y., Takagi, F., Yamashita, K., Nakamura, H., Maeda, H., Sotowa, K., Kusakabe, K., Yamasaki, Y., Morooka, S., “3-D Simulation and Visualization of Laminar Flow in a Microchannel with Hair-Pin Curves”, AIChE Journal Vol.50, pp.1530-1535, 2004.
[34] Sudarsan, A.P. and Ugaz, V.M., “Fluid mixing in planar spiral microchannels”, The Royal Society of Chemistry Vol.6, pp.74-82, 2005.
[35] Cheng, C.H. and Chang, M.H., “A Simplified Conjugate - gradient Method For Shape Identification Based on Thermal Data”, Numerical Heat Transfer, Part B: Fundamentals Vol.43, pp.489-507, 2003.
[36] Cheng, C.H., Lin, H.H. and Lai, G.J., “Numerical optimization of proton exchange membrane fuel cell cathodes”, Journal of Power Sources Vol.165, pp.803-813, 2007.
[37] Jang, J.Y., Cheng, C.H., Hwang, Y.S. and Wu, Y.M., “PEM Fuel Cell Channel Width Optimization by Integrating Computational Fluid Dynamics Code with Optimization Method”, 9th Asia Pacific Conference on the Built Environment, 2007.
[38] CFD-ACE(U), CFD Research Corporation, Albama, USA, 2006.
[39] Jang, J.Y., Cheng, C.H. and Huang, Y.X., “Optimal design of baffles locations with interdigitated flow channels of a centimeter - scale proton exchange membrane fuel cell”, International Journal of Heat and Mass Transfer Vol.53, pp.732-743, 2010.
[40] Bass, E.A., Merritt, P.M., Sharp, C.A., Wall, C.M. and Campbell, J., “Cylindrical PEM fuel cells”, Fuel Cells Bulletin Vol.3, pp.16, 2000.
[41] Mazumder, S. and Cole, J.V., “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells : I. Model Predictions without Liquid Water Transport”, Journal of The Electrochemical Society Vol.150, pp.A1503-A1509, 2003.
[42] Mazumder, S. and Cole, J.V., “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells : II. Model Predictions with Liquid Water Transport”, Journal of The Electrochemical Society Vol.150, pp.A1510-A1517, 2003.
[43] Dagan, G., “Flow and transport in porous formation”, Springer-Verlag GmbH & Co. KG., 1989.
[44] Bird, R.B., Stewart, W. and Lightfoot, E.N., “Transport Phenomena”, John Wiley, New York, 1960.
[45] Bruggeman, D.A.G., “Calculations of various physical constants of heterogeneous substance : part I, dielectric constants and conductivity of isotropic substance”, Annalen der Physik Vol.24, pp.636-699, 1935.
[46] Wang, C.Y. and Cheng, P., “Multiphase flow and heat transfer in porous media”, Advances in Heat Transfer Vol.30, pp.93-196, 1997.
[47] Van Doormaal, J.P. and Raithby, F.D., “Enhancements of the SIMPLE Method Predicting Incompressible Fluid Flows”, Numerical heat Transfer Vol.7, pp.147-163, 1984.
[48] Patankar, S.V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing corpotation, 1984.
校內:2012-07-29公開