簡易檢索 / 詳目顯示

研究生: 葉忠憲
Yeh, Chung-Hsien
論文名稱: 掃描式熱探針技術合成並微影銀奈米粒子及其電漿子共振性質之研究
Plasmonic Resonances of Silver Nanoparticles Synthesized and Patterned by Scanning Thermal Lithography
指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 84
中文關鍵詞: 掃描熱探針微影技術定點熱分析微熱分析過氧化物電漿子共振銀奈米粒子
外文關鍵詞: Scanning Thermal Lithography, in-situ Thermal Analysis, Microthermal Analysis, Peroxide, Plasmon Resonance, Silver Nanoparticles
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以掃描熱探針微影技術在高分子薄膜內定點合成及成像銀奈米粒子。掃描熱探針技術是利用掃描探針顯微鏡搭配微米級的熱探針,此設備不但能提供定點加熱而且也能同時作為溫度感應器。將光學級的聚對苯二甲酸乙二醇酯和銀的前趨物-三氟醋酸銀溶液,利用旋轉塗布的方式在玻片上成膜。藉由在室溫下的溶劑退火,使得聚對苯二甲酸乙二醇酯薄膜的軟化溫度提升。此外,異苯過氧化氫為一種過氧化物的高能物質,能在較低的溫度下產生熱裂解,此特性在掃描熱微影過程中能提供額外的熱源,並且在熱探針所加熱的區域加速產生所需的物理和化學反應。實驗結果顯示,高能物質輔助掃描熱探針微影技術成能將聚對苯二甲酸乙二酯醇薄膜內的銀奈米粒子還原溫度降低至200 oC。由暗視野光學顯微鏡研究掃描熱探針顯微鏡微影的銀奈米陣列之表面電漿共振特性,散射光譜顯示隨著陣列間距的縮小,峰值呈現藍位移,此特性是由於奈米粒子間產生耦合。

    Scanning thermal lithography (SThL) was demonstrated in this research work for the in-situ synthesis and patterning of silver nanoparticles in a polymer thin film. SThL technique involved the scanning probe microscope equipped with a micro-scale thermal probe that provided a localized heating mechanism and simultaneously acted as a temperature sensor. Robust and optically-transparent poly(ethylene terephthalate) (PET) was co-dissolved with silver trifluoroacetic acid, the nanoparticle precursor, and spin-coated on the slide. Solvent annealing process at room temperature successfully promotes the softening temperature of the spin-coated PET. In addition, a peroxide-based energetic, cumene hydroperoxide (CHP), was incorporated to provide the extra joule energy during the SThL process. Thermal decomposition of CHP took place at a relatively-low temperature. Its decomposition exothermic energy accelerated the desired chemical or physical reactions right under the SThL probe. As a result, the energetic-assisted SThL produced and patterned the silver nanoparticles in a PET thin film at the temperature as low as 200 oC. Obtained SThL-synthesized silver nanoparticles were examined by the dark-field microscope, and the surface plasmon resonance was found blue-shifted as closing the SThL array spacing. Desired SThL patterns and the plasmon coupling were demonstrated and investigated.

    中文摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VI List of Illustrations VII Chapter 1 Introduction 1 1.1 Introduction of Plasmonics 1 1.2 Introduction of scanning probe microscopy (SPM) 2 1.2.1 Scanning tunneling microscopy (STM) 2 1.2.2 Atomic force microscopy (AFM) 3 1.2.3 Scanning thermal microscopy (SThM) 5 1.3 Surface plasmon 8 1.3.1 Localized surface plasmon resonance (LSPR) 9 1.3.2 Factors for effecting LSPR 10 1.3.3 Plasmon coupling in periodic nanoparticle arrays 12 1.4 Fabrication of metal nanostructures 13 1.4.1 Templated method 13 1.4.2 Electron-beam lithography 13 1.4.3 Laser printing 14 1.5 Scanning probe lithography (SPL) 15 1.5.1 Dip-pen lithography (DPL) 15 1.5.2 Anodization lithography (ANL) 16 1.5.3 Mechanical force lithography (MFL) 16 1.5.4 Scanning thermal lithography (SThL) 17 1.6 Introduction of thermal probe, in-situ thermal analysis and SThM 20 1.6.1 Micro-scale thermal probe: Wollaston wire probe 20 1.6.2 Nano-scale thermal probe: nano-TATM probes 20 1.7 Theory of scanning thermal microscopy (SThM) 23 1.8 The principle of in-situ thermal analysis 25 1.9 Energy absorption by a sample from micro- or nano-probe 28 Chapter 2 Motivation of research 32 Chapter 3 Experiments 33 3.1 Materials and instruments 33 3.1.1 Materials 33 3.1.2 Instruments 35 3.2 Experiment process 36 3.2.1 PET film preparation 36 3.2.2 Pattering on PET/CF3COOAg/CHP films by SThL 38 3.2.3 Scattering spectra measurement 39 3.3 Analysis instrument 40 3.3.1 Scanning probe microscopy (SPM) 40 3.3.2 Dark-field optical microscopy 40 3.3.3 Spectrometer 42 Chapter 4 Result and Discussion 43 4.1 Preparing polymer/silver precursors/energetic films 43 4.1.1 Silver precursors 43 4.1.2 Preparation of PET/CF3COOAg films via solution dipping process 45 4.1.3 Preparation of PET/CF3COOAg films via spin-coating process 47 4.2 Investigations of spin-coated PET/CF3COOAg/energetics films 49 4.2.1 Thermal analysis of PET/CF3COOAg/energetics films 49 4.2.2 Optical properties of PET/CF3COOAg/energetics films 52 4.2.3 UV-vis spectra of PET/CF3COOAg/energetics films 57 4.2.4 Removal of unreacted CF3COOAg from PET films 59 4.3 Thermal analysis of CHP and PET/CHP films 61 4.3.1 In-situ thermal analysis of CHP 61 4.3.2 In-situ thermal analysis of PET/CHP films 63 4.4 Patterns fabricated by scanning thermal lithography (SThL) 66 4.4.1 The morphology of patterns fabricated by SThL 66 4.4.2 The dark-field optical microscopy images patterned by SThL 69 4.5 Fabrication of silver nanoparticles arrays by scanning thermal lithography 72 4.5.1 Effect of probe temperature 72 4.5.2 Effect of arrays patterns 75 Chapter 5 Conclusion 78 Chapter 6 Reference 79

    1. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,”. Ann. Phys. 1908, 25, 377-445.
    2. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films. Physical Review 1957, 106, 874-881.
    3. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424, 824-830.
    4. Quinten, M.; Leitner, A.; Krenn, J. R.; Aussenegg, F. R., Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 1998, 23, 1331-1333.
    5. Krenn, J. R.; Dereux, A.; Weeber, J. C.; Bourillot, E.; Lacroute, Y.; Goudonnet, J. P.; Schider, G.; Gotschy, W.; Leitner, A.; Aussenegg, F. R.; Girard, C., Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles. Physical Review Letters 1999, 82, 2590-2593.
    6. Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A., Plasmonics - A route to nanoscale optical devices. Advanced Materials 2001, 13, 1501-1505.
    7. Maier, S. A.; Brongersma, M. L.; Atwater, H. A., Electromagnetic energy transport along Yagi arrays. Materials Science and Engineering: C 2002, 19, 291-294.
    8. Maier, S. A.; Brongersma, M. L.; Atwater, H. A., Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices. Applied Physics Letters 2001, 78, 16-18.
    9. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., Surface studies by scanning tunneling microscopy. Physical Review Letters 1982, 49, 57.
    10. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., 7 x 7 reconstruction on Si(111) resolved in real space. Physical Review Letters 1983, 50, 120.
    11. Hansma, P. K.; Tersoff, J., Scanning tunneling microscopy. Journal of Applied Physics 1987, 61, R1-R24.
    12. Binnig, G.; Garcia, N.; Rohrer, H.; Soler, J. M.; Flores, F., Electron-metal-surface interaction potential with vacuum tunneling: Observation of the image force. Physical Review B 1984, 30, 4816-4818.
    13. Binnig, G.; Quate, C. F.; Gerber, C., Atomic force microscope. Physical Review Letters 1986, 56, 930.
    14. Meyer, E., Atomic force microscopy. Progress in Surface Science 1992, 41, 3-3.
    15. Binnig, G.; et al., Atomic resolution with atomic force microscope. EPL (Europhysics Letters) 1987, 3, 1281.
    16. Oesterschulze, E.; Stopka, M. In Photothermal imaging by scanning thermal microscopy, Mineapolis, Minnesota (USA), AVS: Mineapolis, Minnesota (USA), 1996; pp 1172-1177.
    17. Price, D. M.; Reading, M.; Hammiche, A.; Pollock, H. M., Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis. International Journal of Pharmaceutics 1999, 192, 85-96.
    18. Gmelin, E.; Fischer, R.; Stitzinger, R., Sub-micrometer thermal physics - An overview on SThM techniques. Thermochimica Acta 1998, 310, 1-17.
    19. Pylkki, R. J.; Moyer, P. J.; West, P. E., Scanning near-field optical microscopy and scanning thermal microscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1994, 33, 3785-3790.
    20. Nelson, B. A.; King, W. P., Measuring material softening with nanoscale spatial resolution using heated silicon probes. Review of Scientific Instruments 2007, 78.
    21. Hammiche, A.; Reading, M.; Pollock, H. M.; Song, M.; Hourston, D. J., Localized thermal analysis using a miniaturized resistive probe. Review of Scientific Instruments 1996, 67, 4268-4274.
    22. Craig F. Bohren, D. R. H., Absorption and Scattering of Light by Small Particles. Wiley: New York, 1998.
    23. Hulst, V. D., Light Scattering by Small Particles. Courier Dover Publications: New York, 1981.
    24. Yguerabide, J.; Yguerabide, E. E., Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications: I. Theory. Analytical Biochemistry 1998, 262, 137-156.
    25. Creighton, J. A.; Eadon, D. G., Ultraviolet-visible absorption spectra of the colloidal metallic elements. Journal of the Chemical Society, Faraday Transactions 1991, 87, 3881-3891.
    26. Hutter, E.; Fendler, J. H., Exploitation of Localized Surface Plasmon Resonance. Advanced Materials 2004, 16, 1685-1706.
    27. Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y., Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. The Journal of Physical Chemistry B 2006, 110, 15666-15675.
    28. Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L.-P.; Xia, Y., Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30−200 nm and Comparison of Their Optical Properties. Journal of the American Chemical Society 2010, 132, 11372-11378.
    29. Zeng, J.; Roberts, S.; Xia, Y., Nanocrystal-Based Time–Temperature Indicators. Chemistry – A European Journal 2010, 16, 12559-12563.
    30. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics 2002, 116, 6755-6759.
    31. Duval Malinsky, M.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P., Nanosphere Lithography:  Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles. The Journal of Physical Chemistry B 2001, 105, 2343-2350.
    32. Lamprecht, B.; Schider, G.; Lechner, R. T.; Ditlbacher, H.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R., Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance. Physical Review Letters 2000, 84, 4721-4724.
    33. Haynes, C. L.; McFarland, A. D.; Zhao, L.; Van Duyne, R. P.; Schatz, G. C.; Gunnarsson, L.; Prikulis, J.; Kasemo, B.; Käll, M., Nanoparticle Optics:  The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†. The Journal of Physical Chemistry B 2003, 107, 7337-7342.
    34. Hicks, E. M.; Zou, S.; Schatz, G. C.; Spears, K. G.; Van Duyne, R. P.; Gunnarsson, L.; Rindzevicius, T.; Kasemo, B.; Käll, M., Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography. Nano Letters 2005, 5, 1065-1070.
    35. Zou, S.; Schatz, G. C., Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. The Journal of Chemical Physics 2004, 121, 12606-12612.
    36. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Materials 2003, 2, 229-232.
    37. Maier, S. A.; Kik, P. G.; Atwater, H. A., Optical pulse propagation in metal nanoparticle chain waveguides. Physical Review B 2003, 67, 205402.
    38. Eustis, S.; El-Sayed, M. A., Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews 2006, 35, 209-217.
    39. Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A., Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chemical Reviews 2011, 111, 3736-3827.
    40. Xue, C.; Millstone, J. E.; Li, S.; Mirkin, C. A., Plasmon-Driven Synthesis of Triangular Core–Shell Nanoprisms from Gold Seeds. Angewandte Chemie International Edition 2007, 46, 8436-8439.
    41. Pinto, Y. Y.; Le, J. D.; Seeman, N. C.; Musier-Forsyth, K.; Taton, T. A.; Kiehl, R. A., Sequence-Encoded Self-Assembly of Multiple-Nanocomponent Arrays by 2D DNA Scaffolding. Nano Letters 2005, 5, 2399-2402.
    42. Pecharroman, C., Influence of the close sphere interaction on the surface plasmon resonance absorption peak. Physical Chemistry Chemical Physics 2009, 11, 5922-5929.
    43. Guffey, M. J.; Scherer, N. F., All-Optical Patterning of Au Nanoparticles on Surfaces Using Optical Traps. Nano Letters 2010, 10, 4302-4308.
    44. Urban, A. S.; Lutich, A. A.; Stefani, F. D.; Feldmann, J., Laser Printing Single Gold Nanoparticles. Nano Letters 2010, 10, 4794-4798.
    45. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A., "Dip-pen" nanolithography. Science 1999, 283, 661-663.
    46. Salaita, K.; Wang, Y.; Mirkin, C. A., Applications of dip-pen nanolithography. Nat Nano 2007, 2, 145-155.
    47. Wang, H. T.; Nafday, O. A.; Haaheim, J. R.; Tevaarwerk, E.; Amro, N. A.; Sanedrin, R. G.; Chang, C. Y.; Ren, F.; Pearton, S. J., Toward conductive traces: Dip Pen Nanolithography (R) of silver nanoparticle-based inks. Applied Physics Letters 2008, 93.
    48. Huang, L.; Chang, Y. H.; Kakkassery, J. J.; Mirkin, C. A., Dip-pen nanolithography of high-melting-temperature molecules. Journal of Physical Chemistry B 2006, 110, 20756-20758.
    49. Amro, N. A.; Xu, S.; Liu, G.-y., Patterning surfaces using tip-directed displacement and self-assembly. Langmuir 2000, 16, 3006-3009.
    50. Liu, M.; Amro, N. A.; Chow, C. S.; Liu, G.-y., Production of nanostructures of DNA on surfaces. Nano Letters 2002, 2, 863-867.
    51. Zhang, H.; Mirkin, C. A., DPN-generated nanostructures made of gold, silver, and palladium. Chemistry of Materials 2004, 16, 1480-1484.
    52. Bullen, D.; Liu, C., Electrostatically actuated dip pen nanolithography probe arrays. Sensors and Actuators A: Physical 2006, 125, 504-511.
    53. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Applied Physics Letters 1990, 56, 2001-2003.
    54. Fontaine, P. A.; Dubois, E.; Stievenard, D., Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon. Journal of Applied Physics 1998, 84, 1776-1781.
    55. Han, J.; Lee, K. H.; Fujii, S.; Sano, H.; Kim, Y. J.; Murase, K.; Ichii, T.; Sugimura, H., Scanning capacitance microscopy for alkylsilane-monolayer-covered Si substrate patterned by scanning probe lithography. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap. 2007, 46, 5621-5625.
    56. Lee, S.; Saito, N.; Takai, O., Highly reproducible technique for three-dimensional nanostructure fabrication via anodization scanning probe lithography. Applied Surface Science 2009, 255, 7302-7306.
    57. Okada, Y.; Amano, S.; Kawabe, M.; James S. Harris, J., Basic mechanisms of an atomic force microscope tip-induced nano-oxidation process of GaAs. Journal of Applied Physics 1998, 83, 7998-8001.
    58. Matsumoto, K.; Takahashi, S.; Ishii, M.; Hoshi, M.; Kurokawa, A.; Ichimura, S.; Ando, A., Application of STM nanometer-size oxidation process to planar-type MIN diode. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1995, 34, 1387-1390.
    59. Choi, I.; Kim, Y.; Yi, J., Fabrication of hierarchical micro/nanostructures via scanning probe lithography and wet chemical etching. Ultramicroscopy 2008, 108, 1205-1209.
    60. Choi, I.; Yang, Y. I.; Kim, Y. J.; Kim, Y.; Hahn, J. S.; Choi, K.; Yi, J., Directed positioning of single cells in microwells fabricated by scanning probe lithography and wet etching methods. Langmuir 2008, 24, 2597-2602.
    61. Hsu, J.-H.; Lin, C.-Y.; Lin, H.-N., Fabrication of metallic nanostructures by atomic force microscopy nanomachining and lift-off process. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2004, 22, 2768-2771.
    62. Chen, Y.-J.; Hsu, J.-H.; Lin, H.-N., Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process. Nanotechnology 2005, 16, 1112.
    63. Chen, H.-A.; Lin, H.-Y.; Lin, H.-N., Localized Surface Plasmon Resonance in Lithographically Fabricated Single Gold Nanowires. The Journal of Physical Chemistry C 2010, 114, 10359-10364.
    64. Bae, J. H.; Ono, T.; Esashi, M., Scanning probe with an integrated diamond heater element for nanolithography. Applied Physics Letters 2003, 82, 814-816.
    65. King, W. P.; Saxena, S.; Nelson, B. A.; Weeks, B. L.; Pitchimani, R., Nanoscale thermal analysis of an energetic material. Nano Letters 2006, 6, 2145-2149.
    66. Hua, Y. M.; Saxena, S.; Clifford, H.; King, W. P., Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip. Journal of Micro-Nanolithography Mems and Moems 2007, 6.
    67. Hua, Y. M.; King, W. P.; Henderson, C. L., Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography. Microelectronic Engineering 2008, 85, 934-936.
    68. Nonnenmacher, M.; Wickramasinghe, H. K., Scanning probe microscopy of thermal conductivity and subsurface properties. Applied Physics Letters 1992, 61, 168-170.
    69. Nonnenmacher, M.; Wickramasinghe, H. K., Optical absorption spectroscopy by scanning force microscopy. Ultramicroscopy 1992, 42-44, 351-354.
    70. Nakabeppu, O.; Igeta, M.; Hijikata, K., EXPERIMENTAL STUDY ON POINT CONTACT TRANSPORT PHENOMENA USING THE ATOMIC FORCE MICROSCOPE. Microscale Thermophysical Engineering 1997, 1, 201-213.
    71. Mills, G.; Zhou, H.; Midha, A.; Donaldson, L.; Weaver, J. M. R., Scanning thermal microscopy using batch fabricated thermocouple probes. Applied Physics Letters 1998, 72, 2900-2902.
    72. Nakabeppu, O.; Chandrachood, M.; Wu, Y.; Lai, J.; Majumdar, A., Scanning thermal imaging microscopy using composite cantilever probes. Applied Physics Letters 1995, 66, 694-696.
    73. Majumdar, A., Scanning thermal microscopy. Annual Review of Materials Science 1999, 29, 505-585.
    74. Kim, K.; Chung, J.; Won, J.; Kwon, O.; Lee, J. S.; Park, S. H.; Choi, Y. K., Quantitative scanning thermal microscopy using double scan technique. Applied Physics Letters 2008, 93, 203115-3.
    75. Sung, J.; Hicks, E. M.; Van Duyne, R. P.; Spears, K. G., Nanoparticle Spectroscopy: Plasmon Coupling in Finite-Sized Two-Dimensional Arrays of Cylindrical Silver Nanoparticles. The Journal of Physical Chemistry C 2008, 112, 4091-4096.
    76. Nishijima, Y.; Rosa, L.; Juodkazis, S., Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. Optics Express 2012, 20, 11466-11477.
    77. Kinnan, M. K.; Chumanov, G., Plasmon Coupling in Two-Dimensional Arrays of Silver Nanoparticles: II. Effect of the Particle Size and Interparticle Distance†. The Journal of Physical Chemistry C 2010, 114, 7496-7501.
    78. Zou, S.; Janel, N.; Schatz, G. C., Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. The Journal of Chemical Physics 2004, 120, 10871-10875.
    79. Zhao, L.; Kelly, K. L.; Schatz, G. C., The Extinction Spectra of Silver Nanoparticle Arrays:  Influence of Array Structure on Plasmon Resonance Wavelength and Width†. The Journal of Physical Chemistry B 2003, 107, 7343-7350.

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE