| 研究生: |
曾怡禎 Tzeng, Yi-Jen |
|---|---|
| 論文名稱: |
具輔助風帆之船舶於不同海況中之運動模擬分析 The motion simulation analysis for the sail-assisted ship in the seaway |
| 指導教授: |
方銘川
Fang, Ming-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 風帆輔助 、船舶運動 、波浪 、自動控制 、節能 |
| 外文關鍵詞: | sail-assisted, ship motions, waves, automatic controller, energy-saving |
| 相關次數: | 點閱:128 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要目的為模擬風帆輔助之船舶航行於不同海況中之運動情況,並考量風帆船舶航行之安全性,同時評估加入風帆後,船舶節能之效果。
本文以船體六度運動方程式為基礎,計算風帆受力後加入運動方程式內,運用四階Runge-Kutta之數值方法求解時程領域下船舶之運動反應,並加入最佳操帆控制來達到風帆節能效果;為使風帆助航發揮最大效能,須具備一有效率之帆角控制,本文考慮船舶於自動操控時,真實船向與目標航向並不會永遠一致,因此,風帆受風力分量則以指向目標航向上為主;風帆最佳攻角之選取法採比較選取,運用風帆空氣動力性能曲線計算風帆全部攻角所能產生之升阻力,並選出使船舶於航行所能得到最大推力之最佳攻角,藉此換算出實際轉帆角,提供操帆之參考。
文中由所設定之目標點控制航向並模擬不同海況下之船舶運動反應,分析其航行時間多寡,利於評估風帆船舶於何風向角下之助益較大;並延伸應用於真實航線下(台灣-基隆港至日本-長崎港)之模擬,模擬航行時所採用之風浪狀況為美國國家海洋及大氣資料管理局NOAA(National Oceanic And Atmospheric Administration )之全球海氣象資料,最終進行整體航程省油及減碳排放量之評估。
根據本文模擬結果顯示,於正逆風情況下,因採風浪同向,船舶除了受風阻外,仍受波浪阻力影響,導致船舶速度增加率較差;側風情況,因加入風帆可利用側向來風,將風阻化為推力,進而提供船舶部分動力達到節能效果;順風情況,雖順浪能有效地幫助船舶前進,但因此處相對風速較小,使船舶增加率較側風情況差;綜合以上結果,模擬船舶於真實航線下,加入風帆之船舶能有效地幫助航行時之節能省油,達到經濟及環保之效益。
The main purpose of the present study is to establish the motion simulation model for a sail-assisted ship in the seaway, which also includes the considerations of the safety and energy saving of the ship.
The study based on the six degrees of freedom motions of ship in waves, and then adds the sail force due to the wind sails on board installed. The time domain simulation’s calculation for ship motions in the seaway is treated by the fourth order Runge-Kutta method. To attain the optimal energy saving of the ship, it is necessary to control the angle of sail based on the aerodynamic characteristics curve of sail. Based on the set waypoints, we can control the ship to navigate the desired course in different sea states and judge if the benefits of the sail-assisted ship can get by analyzing the sailing time. Further, we also simulate the real navigation from Keelung port to Nagasaki Port to verify the advantage of the sail-assisted ship in seaway.
According to the results, the ship navigates in head wind will cause the less speed due to wind resistance and wave resistance. It also reveals that sails are able to get the optimal turning angle transforming the wind resistance into thrust in lateral wind. Finally, although the following wind may help the ship to advance faster, the suitable enough relative velocity is the significant factor on the thrust in downwind. Therefore, rate of speed change of downwind is not necessarily larger than that in lateral wind. In summary, sail-assisted ship can achieve economic and ecofriendly benefit.
[1] Brooks, R.R., Iyengar, S.S., and Chen, J., “Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms,” Artificial Intelligence, Vol. 84, pp. 339-354, 1996.
[2] Crossland, P. and Johnson, M.C.,”A time domain simulation of deck wetness in head seas,” Proceeding of RINA International Conference on Ship Motions and Manoeuverability, London, UK, 1998.
[3] Cao, Y. and Lee, T.H., “Maneuvering of surface vessels using a fuzzy logic controller,” Journal of Ship Research, Vol. 47, No. 2, pp. 101-130, 2003.
[4] Eremenko, A. "Why airplanes fly, and ships sail." pp. 1-3, 2013
[5] Fang, M-C., “Second-order steady forces on a ship advancing in waves,” Int. Shipbuilding Prog., 38(413), pp. 73~93, 1991
[6] Fang, M.C., Lee, M.L., and Lee, C.K., “The simulation of water shipping for a ship advancing in large longitudinal waves,” Journal of Ship Research, Vol. 37, pp. 26-137, 1993.
[7] Fujiwara, Toshifumi, et al. "On aerodynamic characteristics of a hybrid-sail with square soft sail." Proceedings of the International Society of Offshore and Polar Engineering, ISOPE2003, Hawaii 326-333, 2003
[8] Fujiwara, Toshifumi, et al. “Sail–sail and sail–hull interaction effects of hybrid-sail assisted bulk carrier,” Journal of marine science and technology 10.2, pp. 82-95, 2005.
[9] Hirano, M. and Takashina J., “A calculation of ship turning motion taking coupling effect due to heel into consideration,” Transaction of the West-Japan Society of Naval Architects, Vol. 59, pp. 71-81, 1980.
[10] Hirano, M., “On the calculation method of ship maneuvering motion at initial design phase (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 147, pp. 144-153, 1980.
[11] Hamada, N., “The development in Japan of modern sail-assisted ships for energy conservation,” Regional Conference on Sail-Motor Propulsion, 1900.
[12] Hamamoto, M. and Kim, Y.S., “A new coordinate system and the equations describing maneuvering motion of a ship in waves (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 173, pp. 209-220, 1993.
[13] Hamamoto, M., Matsuda, A., and Ise, Y., “Ship motion and the dangerous zone of a ship in severe following seas (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 175, pp. 69-78, 1994.
[14] Isherwood, R.M., “Wind Resistance of Merchant Ships,” Transactions of RINA, Vol. 115, pp. 327-338, 1973.
[15] Inoue, S., Hirano, M. and Kijima, K., “Hydrodynamic derivatives on ship maneuvering,” International Shipbuilding Progress, Vol. 28, pp. 112-125, 1981.
[16] Inoue, S., Hirano, M., Kijima, K., and Takashina, J., “A practical calculation method of ship maneuvering motion,” International Shipbuilding Progress, Vol. 28, pp. 207-222, 1981.
[17] Ignazio, M., Matthieu, S., Jinsong, X., and Fei, W., “A numerical method for the design ships with wind-assisted propulsion,” Ocean engineering, Vol. 105, pp. 33-42, 2015.
[18] Jaime Abril, Jaime Salom, Oscar Calvo, “Fuzzy control of a sailboat,” International Journal of Approximate Reasoning, Volume 16, Issues 3–4, pp. 359-375, 1997.
[19] Kanai, A., Uzawa, K. and Ouchi, K., “Performance Prediction of Large Sailing Vessel with Multiple Wing Sails by CFD Wind Tunnel Test and EPP,” Conference Proceedings of JASNAOE, 2011.
[20] Kazuyuki, O., Kiyoshi, U., Akihiro, K. and Masanobu, K., “Wind Challenger Project” The Next Generation Sailing Vessel,” Proceedings of 5th PAAMES and AMEC, Paper No. NSC-06, 2012.
[21] Milgram J.H.” The Aerodynamic of Sails”, Seventh Symposium of naval hydrodynamics, Rome, 1968.
[22] Murata M., Tsuji M., and Watane T., “Aerodynamic characteristics of 1600 DWT sail-assisted tanker,” North East Coast Institution of Engineers & shipbuilders Transactions, 1982.
[23] McGookin, E.W., Murray-Smith, D.J., Li, Y., and Fossen, T.I., “Ship steering control system optimization using genetic algorithms,” Control Engineering Practice, Vol. 8, No. 4, pp. 429-443, 2000.
[24] Newman, J.N.,” The second-order time-average vertical force on a submerged body moving beneath a regular wave system” , unpublish,1970.
[25] Pravesh, C.S.,Kunal, G., ”Revival of the modern wing sails for the propulsion of commercial ships,” International journal of mathematical, computational, physical, electrical and computer engineering, Vol.3, pp.207-212, 2009.
[26] Peter Nuttall, Alison Newell, Biman Prasad, Joeli Veitayaki, Elisabeth Holland, “A review of sustainable sea-transport for Oceania: Providing context for renewable energy shipping for the Pacific,” Marine Policy, Volume 43, pp. 283-287, 2014.
[27] Qiao, L., Yasunori, N., Takuji, N., and Yoshiho, I., “ A study on the performance of cascade hard sails and sail-equipped vessels.” Ocean Engineering, Vol.98, pp.23-31,2015
[28] Robert E, Sheldahl., Paul C, Klimax., “Aerodynamic Characteristics of seven Symmetrical Airfoil Section Through 180-Degree Angle of Attack for use in Aerodynamic Analysis of vertical Axis Wind turbines” Scandia National Laboratories energy report, pp56-57,1981
[29] Roland Stelzer, Tobias Pröll, “Autonomous sailboat navigation for short course racing,” Robotics and Autonomous Systems, Volume 56, Issue 7, 31, pp. 604-614, 2008.
[30] Salvesen, N., ”Second-order steady-state forces and moments on surface ships in oblique regular waves” ,Int. Symp. On Dynamics of Marine Vehicles and Structures in Waves, Univ. College, London,1974.
[31] Schenzle, P. "Estimation of wind assistance potential." Journal of wind engineering and industrial aerodynamics , Volume 20, Issues 1–3, pp.97-110, 1985.
[32] Viola, I., & Fossatti, F., “Downwind sails aerodynamic analysis.,” BBAA VI International Colloquium on Bluff Bodies Aerodynamics & Applications, Milano, Italy, 2008.
[33] Wagner B., “Wind tunnel tests of a six-masted sailing vessel of Prolss design,” Institute of Ship building of the University of Hamburg, 1967.
[34] Wang, H.M., WU, G.T, and Yang, B.S., “Efficiency analysis of sail-assisted ship based on CFD,” Shipbuilding of China, Vol.52, pp. 25-32, 2011
[35] Yoshimura, Y. and Nomoto, K., “Modeling of manoeuvring behavior of ships with a propeller idling, boosting and reversing (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 144, pp. 57-69, 1978.
[36] Yeh E, “Fuzzy Control For Self-steering Of A Sailboat,” Proceedings of the International Conference on Intelligent Control and Instrumentation, Singapore, 1992.
[37] 吳宜親,波浪中三體船非線性力之三維解,國立成功大學系統與船舶機 電工程研究所碩士論文,民國九十六年。
[38] 李子宜,應用類神經-模糊演算法於波浪中可攜式船舶動態定位控制系統之研究,國立成功大學系統與船舶機電工程研究所博士論文,民國一零二年。
[39] 林后鈺,以船舶耐海性為基礎開發船舶氣候航程規畫之研究,國立成功大學系統與船舶機電工程研究所碩士論文,民國一百零一年。
[40] 柏開祥, 帆船VPP與最佳航線研究模型的建立與實現, 武漢理工大學學報第31卷第四期, pp.660-663, 2007.
[41] 高品純志,港灣域における船の操縱運動計算法に關する研究(日文),博士論文,東京大學,日本,1992。
[42] 徐玉樹,順浪中船舶之穩度安全性,國立成功大學造船暨船舶機械工程研究所碩士論文,民國八十六年。
[43] 徐穎淳,風帆輔助船舶航行之自動操控研究,國立成功大學系統與船舶機電工程研究所碩士論文,民國一零二年。
[44] 關西造船協會,造船設計便覽(日文),海文堂出版株式會社,東京,1983。
[45] 羅志宏,船隻在順波中航向穩定性與運動之分析,國立成功大學造船暨船舶機械工程研究所碩士論文,民國九十年。
[46] 羅志宏,船舶在波浪中之非線性運動操控模式之探討,國立成功大學造船暨船舶機械工程研究所博士論文,民國九十五年。
[47] MV Ashington (https://www.newscientist.com/article/mg12416913-400-technology-boat-sets-sail-on-a-wing-and-a-computer/)
[48] Skysail (http://www.skysails.info/skysails-marine/skysails-antrieb-fuer-frachtschiffe )
[49] B9 shipping (http://www.b9energy.com/B9Shipping/tabid/4036/language/en-US/Default.aspx )
[50] ENERCON (http://www.enercon.de/home/ )
[51] Sailboat (http://www.sailing.org.tw/knowledge/theory.html)