| 研究生: |
林瑋翎 Lin, Wei-Ling |
|---|---|
| 論文名稱: |
利用單幅遙測影像估算崩塌體積 Landslide Volume Estimation with Single Remote Sensing Imagery |
| 指導教授: |
余騰鐸
Yu, Ting-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 數值高程模型 、崩塌量 、影像相關係數 、遙測影像 |
| 外文關鍵詞: | DEM, DTM, landslide volume, image correlation coefficient |
| 相關次數: | 點閱:154 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在天然災變後之地表地形均會有明顯的變化,此類變化除了代表災變的規模大小之外,也直接影響災害搶救與復健。因此,在災後最短時間取得災變的範圍與規模為空間資訊學科中為重要且實際的課題。
傳統取得地形變化範圍與規模的方法受限於交通、天候、經費及時間...等條件不適合在災後短期間取得地形變化之工具。由於衛星拍照受現場狀況影響最低,而且不受法規限制,為達到可於災後迅速取得地形變化的目的,因此提出利用單幅衛星影像產製災後數值高程模型,進而估算崩塌量之方法。
本研究以2009年八八風災造成重大災害的小林村東北側獻肚山走山區域輔以九份二山走山區域作為檢測與分析對象,針對崩塌量估算方法進行各種敏感因子分析,以建立相關適用準則。
經過分析,本研究提出以下建議:(a)模擬前應先進行去除雜訊、正規化...等影像前處理程序、(b)無植生或無其他覆蓋物的地表裸露區域較適合進行模擬、(c)其影像熵值或地表粗糙度較高者較適合進行模擬、(d)取得數個點位的真實高程值去進行模擬結果調校可增進計算成果精度與效率。
此外,本研究亦以基因演算法進行簡化版的模擬,其模擬成果證實,基因演算法確實有助於減少模擬所需時間,且可有效取得較為準確的結果。
Nature disasters often bring terrain changes and cause some damage. To make the rescue and recovery work more efficient, it is important to obtain the range and scale of the terrain changewithin short period of time.
The traditional ways of obtaining the information of terrain changes are not suitable for the rescue and recovery purpose because of the limits of traffic, weather, budget…etc. The remote-sensed data can be acquired beyond these limits. Therefore, this research proposed a new method to produce a post-disaster digital terrain model (DTM) with a single satellite image, and calculate the volume changed by comparing the similarity between pre-disaster DTM and the post-disaster image.
In this research, two large-scale landslide area of Taiwan, Xiaolin and Chiufenerhshan, were applied into the analyses of feasibilities and sensitive factors to find out applicable limits and thresholds of this method. To obtain a better result of simulation, following are the limits and suggestions: (a) before the simulation, the satellite image should be preprocessed, such as noise removed and normalized; (b) the landslide area without plants or large shadows will be a better simulating choice; (c) the images with higher entropy values and the areas with higher surface roughness values are more suitable for simulating; (d) add some control points and measure the real elevation values to correct the simulated model could improve both the accuracy and efficiency.
In addition, initial simulation was conducted using genetic algorithm; and according to the primary result, it is proved that genetic algorithm can help shorten the time of simulation and obtain better results effectively.
1. 蔡宗勳(1994),「數值高度模型之地形量度研究」,國立台灣大學地理學研究所碩士論文。
2. 賴進貴(1994),「數值地形模型之比較研究」,國立台灣大學理學院地理學系地理學報,第17期,pp.87-99.。
3. 賴進貴, 史天元(1997),「地形資料視覺化與計測分析」,行政院國家科學委員會專題研究計畫成果報告。
4. 劉昱江, 馮重偉(2000). "基因演算法在重複性工程時間成本分析之應用." 第四屆營建工程與管理研究成果聯合發表會論文集,台灣,台中: 73-84.
5. 許秋玲(2002),「數值高度模型之地形複雜度量度指標研究-以蝕溝等級為例」,國立台灣大學博士論文。
6. 顏宏宇(2005),「LIDAR直接測量數值地形資料精度分析與應用」,國立成功大學地球科學系碩士論文。
7. 蕭國鑫、劉進金、游明芳、陳大科、徐偉城、王晉倫(2006),「結合空載 LiDAR 與航測高程資料應用於地形變化偵測」,航測及遙測學刊,第11卷3期,283-295頁。
8. 張世駿、江介倫、吳進龍、鄭克聲、陳增壽(2006),「衛星遙測影像應用於地表變遷偵測之研究」,農業工程學報,第52卷3期,21-31頁。
9. 王春和 (2009),“基因演算法及重要性指標求解多元件系統維修策略最佳化問題”,資訊管理實務研討會
10. 童士恒, 朱晃葵(2011). "數位影像相關係數法於擋土牆監測之應用." THE 14TH CONFERENCE ON CURRENT RESEARCHES IN GEOTECHNICAL ENGINEERING IN TAIWAN.
11. 行政院農業委員會(2009),www.coa.gov.tw
12. Burrough, P.A. (1986). Digital Elevation Models, in Principles of Geographical Information Systems for Land Resources Assessment: 39-56, Oxford: Clarendon Press
13. Carter, J.R. (1988). Digital Representations of Topographic Surfaces, Photographic Engineering and Remote Sensing, 54(11): 1577-1580.
14. Cheng, R. and M. Gen (1997). Genetic Algorithms and Engineering Design. New York, John Wiley & Sons.
15. T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Paters. (1985). "Application of Digital-Image-Correlation Techniques to Experimental Mechanics." Experimental Mechanics 25(3): 232-244.
16. Cracknell, A. P. and L. Hayes (1991). Introduction to remote sensing. London ; New York, Taylor & Francis.
17. Doyle, F. J. (1978). "Digital Terrain Models: An Overview." Photogrammetric Engineering and Remote Sensing 44(12): 1481-1485.
18. Flaupt, R. L. (1994). Thinned arrays using genetic algorithms. IEEE Transactions on Antennas and Propagation. 42: 993-997.
19. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Publishing Co.,Reading,Mass.
20. Haupt R.L. (1994). "Optimization of array anetennas using genetic algorithms." Proceedings of the Progress in Electromagnetics Research Symposium Noordwijk, The Netherlands: 172.
21. Holland, J.H. (1975), "Adaptation in Natural and Artificial System",Ann Arbor: The University of Michigan Press
22. Hovius, N., Stark, C.P. and Allen, P.A (1997). Sediment flux from a mountain belt derived by landslide mapping. 25.
23. Johnson, J. M. and Y. Rahmat-samii (1994).Genetic algorithm optimization and its application to antenna design. 1: 326-329.
24. Khazai, B. and N. Sitar (2000). "Landsliding in Native Ground: A GIS-Based Approach to Regional Seismic Slope Stability Assessment." Internet Report.
25. Kim, K. J. (2000). "Genetic Alogorithms Apporach to Feature Discretization in Artificial Neural Network for the Prediction of Stock Price Index." Expert Systems with Application 9(3): 125-132.
26. Shujuan Li, Yan Li, Yong Liu, Yuefei X (2007). A GA-based NN approach for makespan estimation, Elsevier Science. 185.
27. Lillesand, T. M. and R. W. Kiefer, (2000). Remote Sensing and Image Interpretation, 4th ed., John Wiley & Sons, New York, USA.
28. Miller, C. L. and R. A. Laflamme (1985). "The digital terrain model-theory and application." Photogrammetric Engineering and Remote Sensing 24(3): 433-443.
29. Mahesh B. Parappagoudar, Dilip Kumar Pratihar, Gauranga Lal Datta (2008). Forward and reverse mappings in green sand mould system using neural networks. 8: 239-260.
30. Salman, A. and M. A. Al-Shammiri (2007). "New Computational Intelligence model for predicting evaporation rates for saline water." Journal of Desalination 14(8): 273-286.
31. Scambos, T. (1992). Application of image cross-correlation to the measurement of glacier velocity using satellite image data, Elsevier Science Publishing Co , Inc , P.O. Box 882, Madison Square Station, New York, NY, 10159-0882, USA
32. Srinivasan, D. (1998). Evolving artificial neural networks for short term load forecasting. 23: 265-276.
33. USGS (1983). "USGS Digital Cartographic Data Standards Digital Elevation Models." Geological Survey Circular 895-B.
34. Weibel, R., Heller, M.,(1991). Digital terrain modelling. In: Maguire, D.J., Goodchild, M.F., Rhind, D.W. (Eds.), Geographical Information Systems, vol. 1. Longman, Harlow. pp. 269-297.
35. Whillans, I. M. (1995). Automatic tracking of crevasses on satellite images, Cold Regions Science and Technology, 23, 201-214
36. Woolard, J. W. (2002). Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: Cape Hatteras, North Carolina.
37. Bisheng Yang, John Wenzhong Shi, Qingquan Li (2005). "An integrated TIN and Grid method for constructing multi-resolution digital terrain models." International Journal of Geographical Information Science 19(10): 1019-1038.
38. Yu T.-T.; Fernandez J.; Rundle J.B (1998). "Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm." Computers & Geosciences 24(2): 173-182.