簡易檢索 / 詳目顯示

研究生: 陳寗
Chen, Ning
論文名稱: Bi12O17Cl2之晶體結構及光催化性質:理論模擬與實驗研究
Crystal Structure and Photocatalytic Properties of Bi12O17Cl2: Theoretical and Experimental Investigations
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: 鉍氯氧化物計算模擬光催化
外文關鍵詞: bismuth oxychloride, calculation simulation, photocatalysis
相關次數: 點閱:48下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究從理論與實驗面向,解析Bi12O17Cl2的晶體結構,並探索Bi12O17Cl2光催化應用可行性。第一部分透過理論的方法,從BiOCl、Bi24O31Cl10與Bi3O4Cl系列鉍氯氧化物之結構差異,結合JCPDS資料庫中的晶格常數與理論X光繞射圖譜的資訊,歸納O/Cl計量變化對於晶體結構的影響,並利用此趨勢推論Bi12O17Cl2的結構模型。最終結果顯示,Bi12O17Cl2同樣是有著Bi2O2層狀結構,且由五層[Bi2O2](六層Bi平面)所構成,而Cl則分布於兩組Bi-O結構之間的結構。
    本研究的第二部分則是使用常溫化學沉澱法合成Bi12O17Cl2,透過調整沉澱劑的氫氧化鈉(NaOH)濃度。當NaOH濃度為1.4 M至7.0 M之間,可於常溫下獲得Bi12O17Cl2結晶相。從實驗結果來看,Bi12O17Cl2為片狀晶體,且主要顯露晶面為{0 0 1}面,而以NaOH濃度為4.0 M合成出的BN40,相對來說其晶體減少了往[0 0 1]方向的成長,使得晶體厚度變薄,讓光電子也較容易擴散至晶體表面,利於進行光催化反應,同時也提高了整體比表面積,增加反應的機會,因此具有最高的光催化降解羅丹明B染料的效率。

    This study analyzed the crystal structure of Bi12O17Cl2 from both theoretical and experimental perspectives, as well as explored the photocatalytic applications. In the first part, the structural differences among bismuth oxychlorides including BiOCl, Bi24O31Cl10, and Bi3O4Cl were investigated using theoretical methods. By combining the lattice parameters and theoretical X-ray diffraction patterns from the JCPDS database, the impact of O/Cl stoichiometry on the crystal structure was deduced. Based on the trend, a structural model for Bi12O17Cl2 was proposed. The result indicates that the structure of Bi12O17Cl2 contains [Bi2O2] layered structure, consisting of five layers of [Bi2O2] with six Bi planes, while Cl is distributed within the structure between two parts of Bi-O structures.
    The second part of this study involved the synthesis of Bi12O17Cl2 using the chemical precipitation method by adjusting the concentration of NaOH. Bi12O17Cl2 phase could be obtained at room temperature when the NaOH concentration ranged from 1.4 M to 7.0 M. Based on the experimental results, Bi12O17Cl2 exhibited a plate-like crystal with {0 0 1} plane being the mainly exposed surface. In comparison, BN40 synthesized with 4.0 M NaOH reduced growth along the [0 0 1] direction, resulting in thinner crystal thickness. This increased the diffusion of photogenerated electrons to the crystal surface, promoting photocatalytic reactions. Additionally, its higher surface area also provided more reaction opportunities. As the result, BN40 exhibited the highest efficiency in photocatalytic degradation of Rhodamine B dye.

    摘要 I Abstract II 致謝 XXI 目錄 XXII 表目錄 XXV 圖目錄 XXV 第一章 緒論 1 1.1   前言 1 1.2 研究目的 1 第二章 文獻回顧 2 2.1 鉍氯氧化合物 2 2.1.1 氯化氧鉍 2 2.1.2非典型計量比半導體 3 2.1.3 Bi12O17Cl2結構研究 3 2.2 光催化反應 5 2.2.1 晶面影響反應效率 6 2.3 密度泛函理論 6 第三章 研究方法與步驟 8 3.1 實驗藥品 8 3.2 樣品製備 8 3.3 光催化實驗 10 3.4 材料性質分析 11 3.4.1 X光粉末繞射分析儀(XRD) 11 3.4.2 掃描式電子顯微鏡 11 3.4.3 穿透式電子顯微鏡 12 3.4.4 比表面積分析儀 12 3.4.5 紫外可見光分光光譜儀 13 3.4.6 表面凱爾文探針掃描光譜儀與光電子能譜儀 13 3.4.7 X光電子能譜儀(XPS) 14 3.5 DFT模擬計算 14 3.6 Reflex模組與繞射圖譜 15 第四章 結果與討論 16 4.1 鉍氯氧系列材料之晶體結構 16 4.1.1 BiOCl 18 4.1.2 Bi24O31Cl10 19 4.1.3 Bi3O4Cl 21 4.1.4 小結 23 4.2 鉍氯氧系列材料之結構變化 24 4.2.1 Bi12O17Cl2基礎結構解析 24 4.2.2 Bi12O17Cl2結構中之O與Cl分佈 32 4.2.3 結構最佳化後之Bi12O17Cl2結構模型 34 4.2.4 小結 36 4.3 製備Bi12O17Cl2與物理性質 40 4.3.1 相組成分析 41 4.3.2 晶體形貌觀察 44 4.3.3 TEM影像觀察 47 4.3.4 BET比表面積 48 4.3.5 表面性質分析 48 4.3.6 光吸收性質分析(UV-Vis) 51 4.3.7 光催化效率實驗 52 4.3.8 染料降解機制 53 第五章 結論 57 參考文獻 59

    [1] Mian, F., Bottaro, G., Rancan, M., Pezzato, L., Gombac, V., Fornasiero, P., & Armelao, L. (2017). Bi12O17Cl2/(BiO)2CO3 nanocomposite materials for pollutant adsorption and degradation: modulation of the functional properties by composition tailoring. ACS Omega, 2(10), 6298-6308.
    [2] Li, H., Li, J., Ai, Z., Jia, F., & Zhang, L. (2018). Oxygen vacancy‐mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angewandte Chemie International Edition, 57(1), 122-138.
    [3] Li, J., Yu, Y., & Zhang, L. (2014). Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale, 6(15), 8473-8488.
    [4] Liu, X., Su, Y., Zhao, Q., Du, C., & Liu, Z. (2016). Constructing Bi24O31Cl10/BiOCl heterojunction via a simple thermal annealing route for achieving enhanced photocatalytic activity and selectivity. Scientific Reports, 6(1), 28689.
    [5] Xu, B., Gao, Y., Li, Y., Liu, S., Lv, D., Zhao, S., ... & Ge, L. (2020). Synthesis of Bi3O4Cl nanosheets with oxygen vacancies: The effect of defect states on photocatalytic performance. Applied Surface Science, 507, 144806.
    [6] Fu, S. M., Li, G. S., Xing, W. E. N., Fan, C. M., Liu, J. X., Zhang, X. C., & Rui, L. I. (2020). Effect of calcination temperature on microstructure and photocatalytic activity of BiOX (X= Cl, Br). Transactions of Nonferrous Metals Society of China, 30(3), 765-773.
    [7] Hao, L., Huang, H., Guo, Y., Du, X., & Zhang, Y. (2017). Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight. Applied Surface Science, 420, 303-312.
    [8] Jiang, E., Song, N., Zhang, X., Yang, L., Liu, C., & Dong, H. (2020). In-situ fabrication of Z-scheme Bi3O4Cl/Bi12O17Cl2 heterostructure by facile pH control strategy to boost removal of various pollutants in water. Chemical Engineering Journal, 388, 123483.
    [9] Xia, J. Y., Tang, M. T., Cui, C. H. E. N., Jin, S. M., & Chen, Y. M. (2012), Transactions of Nonferrous Metals Society of China, 22(9), 2289-2294.
    [10] Wu, Y. C., Huang, Y. T., & Yang, H. Y. (2016), CrystEngComm, 18(36), 6881-6888.
    [11] Gou, X., Li, R., Wang, G., Chen, Z., & Wexler, D. (2009), Nanotechnology, 20(49), 495501.
    [12] Orio, M., Pantazis, D. A., & Neese, F. (2009). Density functional theory. Photosynthesis Research, 102, 443-453.
    [13] Eggenweiler, U., Keller, E., Krämer, V. (2000). Redetermination of the crystal structures of the Arppe compound'Bi24O31Cl10 and the isomorphous Bi24O31Br10. Acta Crystal lographica Section B: Structural Science, 56(3), 431-437.
    [14] Lin, X., Huang, T., Huang, F., Wang, W., & Shi, J. (2006). Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl. The Journal of Physical Chemistry B, 110(48), 24629-24634.
    [15] Tien, L. C., Lin, Y. L., Chen, S. Y. (2013). Synthesis and characterization of Bi12O17Cl2 nanowires obtained by chlorination of α-Bi2O3 nanowires. Materials Letters, 113, 30-33.
    [16] Xiong, J., Song, P., Di, J., Li, H. (2020). Bismuth-rich bismuth oxyhalides: a new opportunity to trigger high-efficiency photocatalysis. Journal of Materials Chemistry A, 8(41), 21434-21454.
    [17] Aliev, A., Olchowka, J., Colmont, M., Capoen, E., Wickleder, C., Mentré, O. (2013). New [PbBi2O4][Bi2O2]Cl2 and [PbnBi10-nO13][Bi2O2]nCl4+n Series by Association of Sizable Subunits: Relationship with Arppe’s Compound Bi24O31Cl10 and Luminescence Properties. Inorganic Chemistry, 52(15), 8427-8435.
    [18] Kato, D., Tomita, O., Nelson, R., Kirsanova, M. A., Dronskowski, R., Suzuki, H., ... & Abakumov, A. M. (2022). Bi12O17Cl2 with a Sextuple Bi-O Layer Composed of Rock‐Salt and Fluorite Units and its Structural Conversion through Fluorination to Enhance Photocatalytic Activity. Advanced Functional Materials, 32(41), 2204112.
    [19] Lv, C., Chen, G., Zhou, X., Zhang, C., Wang, Z., Zhao, B., & Li, D. (2017). Oxygen-induced Bi5+-self-doped Bi4V2O11 with a p–n homojunction toward promoting the photocatalytic performance. ACS Applied Materials & Interfaces, 9(28), 23748-23755.
    [20] Liu, X., Xing, Y., Liu, Z., & Du, C. (2018). Enhanced photocatalytic activity of Bi12O17Cl2 preferentially oriented growth along [200] with various surfactants. Journal of Materials Science, 53(20), 14217-14230.
    [21] Mendez-Alvarado, L. N., Medina-Ramirez, A., Manriquez, J., Navarro-Mendoza, R., Fuentes-Ramirez, R., & Peralta-Hernandez, J. M. (2020). Synthesis of microspherical structures of bismuth oxychloride (BiOCl) towards the degradation of reactive orange 84 dye with sunlight. Materials Science in Semiconductor Processing, 114, 105086.
    [22] Zhang, S., Zhang, G., Yu, S., Chen, X., & Zhang, X. (2009). Efficient Photocatalytic Removal of Contaminant by Bi3NbxTa1− xO7 Nanoparticles under Visible Light Irradiation. The Journal of Physical Chemistry C, 113(46), 20029-20035.
    [23] Liu, T., Wang, L., Lu, X., Fan, J., Cai, X., Gao, B., ... & Lv, Y. (2017). Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways. RSC Advances, 7(20), 12292-12300.
    [24] Armelao, L., Bottaro, G., Maccato, C., & Tondello, E. (2012). Bismuth oxychloride nanoflakes: Interplay between composition-structure and optical properties. Dalton Transactions, 41(18), 5480-5485.
    [25] Nur, A. S., Sultana, M., Mondal, A., Islam, S., Robel, F. N., Islam, A., & Sumi, M. S. A. (2022). A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. Journal of Water Process Engineering, 47, 102728.
    [26] Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Advances, 4(70), 37003-37026.
    [27] Xu, J., Ao, Y., Fu, D., & Yuan, C. (2008), Applied Surface Science, 255(5), 2365-2369.
    [28] Shuk, P., Wiemhöfer, H. D., Guth, U., Göpel, W., & Greenblatt, M. (1996), Solid State Ionics, 89(3-4), 179-196.
    [29] Wu, Y. C., Chaing, Y. C., Huang, C. Y., Wang, S. F., & Yang, H. Y. (2013), Dyes and Pigments, 98(1), 25-30
    [30] Sun, L., Xiang, L., Zhao, X., Jia, C. J., Yang, J., Jin, Z., ... & Fan, W. (2015). Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. Acs Catalysis, 5(6), 3540-3551.
    [31] Liu, S., Kang, S., Wang, H., Wang, G., Zhao, H., & Cai, W. (2016). Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances. Chemical Engineering Journal, 289, 219-230.
    [32] Guan, H., Zhang, X., & Xie, Y. (2014). Soft-chemical synthetic nonstoichiometric Bi2O2.33 nanoflower: a new room-temperature ferromagnetic semiconductor. The Journal of Physical Chemistry C, 118(46), 27170-27174.
    [33] Peng, Y., Wang, K. K., Liu, T., Xu, J., & Xu, B. G. (2017). Synthesis of one-dimensional Bi2O3-Bi2O2.33 heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of high-concentration phenol and MO dyes. Applied Catalysis B: Environmental, 203, 946-954.
    [34] Ma, Y., Jiang, X., Sun, R., Yang, J., Jiang, X., Liu, Z., ... & Han, W. (2020). Z-scheme Bi2O2.33/Bi2S3 heterojunction nanostructures for photocatalytic overall water splitting. Chemical Engineering Journal, 382, 123020.
    [35] Bi, C., Cao, J., Lin, H., Wang, Y., & Chen, S. (2016). BiOI/Bi12O17Cl2: A novel heterojunction composite with outstanding photocatalytic and photoelectric performances. Materials Letters, 166, 267-270.
    [36] Di, J., Zhu, C., Ji, M., Duan, M., Long, R., Yan, C., ... & Liu, Z. (2018). Defect‐rich Bi12O17Cl2 nanotubes self‐accelerating charge separation for boosting photocatalytic CO2 reduction. Angewandte Chemie International Edition, 57(45), 14847-14851.
    [37] Shi, L., Ma, J., Yao, L., Cui, L., & Qi, W. (2018). Enhanced photocatalytic activity of Bi12O17Cl2 nano-sheets via surface modification of carbon nanotubes as electron carriers. Journal of Colloid and Interface Science, 519, 1-10.
    [38] Bi, C., Cao, J., Lina, H., Wang, Y., & Chen, S. (2016). Enhanced photocatalytic activity of Bi12O17Cl2 through loading Pt quantum dots as a highly efficient electron capturer. Applied Catalysis B: Environmental, 195, 132-140.
    [39] He, G., Xing, C., Xiao, X., Hu, R., Zuo, X., & Nan, J. (2015). Facile synthesis of flower-like Bi12O17Cl2/β-Bi2O3 composites with enhanced visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Applied Catalysis B: Environmental, 170, 1-9.
    [40] Huang, H., Xiao, K., He, Y., Zhang, T., Dong, F., Du, X., & Zhang, Y. (2016). In situ assembly of BiOI@ Bi12O17Cl2 pn junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Applied Catalysis B: Environmental, 199, 75-86.
    [41] Zhou, C., Lai, C., Xu, P., Zeng, G., Huang, D., Zhang, C., ... & Wen, M. (2018). In situ grown AgI/Bi12O17Cl2 heterojunction photocatalysts for visible light degradation of sulfamethazine: efficiency, pathway, and mechanism. ACS Sustainable Chemistry & Engineering, 6(3), 4174-4184.
    [42] Zhao, M., Dong, L., Zhang, Q., Dong, H., Li, C., & Tang, H. (2016). Novel plate-stratiform nanostructured Bi12O17Cl2 with visible-light photocatalytic performance. Powder Diffraction, 31(1), 2-7.
    [43] Chang, F., Wu, F., Yan, W., Jiao, M., Zheng, J., Deng, B., & Hu, X. (2019). Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: construction, characterization, and sonocatalytic degradation performance. Ultrasonics Sonochemistry, 50, 105-113.
    [44] Passi, M., & Pal, B. (2022). Recent advances on visible light active non-typical stoichiometric oxygen-rich Bi12O17Cl2 photocatalyst for environment pollution remediation. Journal of Environmental Chemical Engineering, 107688.
    [45] Tien, L. C., Lin, Y. L., & Chen, S. Y. (2013). Synthesis and characterization of Bi12O17Cl2 nanowires obtained by chlorination of α-Bi2O3 nanowires. Materials Letters, 113, 30-33.
    [46] Andrés, J., Gracia, L., Gouveia, A. F., Ferrer, M. M., & Longo, E. (2015). Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations. Nanotechnology, 26(40), 405703.
    [47] Li, K., Tang, Y., Xu, Y., Wang, Y., Huo, Y., Li, H., & Jia, J. (2013). A BiOCl film synthesis from Bi2O3 film and its UV and visible light photocatalytic activity. Applied Catalysis B: Environmental, 140, 179-188.
    [48] Kim, W. J., Pradhan, D., Min, B. K., & Sohn, Y. (2014). Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1− x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Applied Catalysis B: Environmental, 147, 711-725.
    [49] Shan, L. W., Wang, G. L., Liu, L. Z., & Wu, Z. (2015). Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl (0 0 1) core–shell heterojunction. Journal of Molecular Catalysis A: Chemical, 406, 145-151.
    [50] Cui, D., Wang, L., Xu, K., Ren, L., Wang, L., Yu, Y., ... & Hao, W. (2018). Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. Journal of Materials Chemistry A, 6(5), 2193-2199.
    [51] Peng, Y., Mao, Y. G., Kan, P. F., Liu, J. Y., & Fang, Z. (2018). Controllable synthesis and photoreduction performance towards Cr (vi) of BiOCl microrods with exposed (110) crystal facets. New Journal of Chemistry, 42(20), 16911-16918.
    [52] Zhang, L., Niu, C. G., Xie, G. X., Wen, X. J., Zhang, X. G., & Zeng, G. M. (2017). Controlled growth of BiOCl with large {010} facets for dye self-photosensitization photocatalytic fuel cells application. ACS Sustainable Chemistry & Engineering, 5(6), 4619-4629.
    [53] Ding, L., Chen, H., Wang, Q., Zhou, T., Jiang, Q., Yuan, Y., ... & Hu, J. (2016). Synthesis and photocatalytic activity of porous bismuth oxychloride hexagonal prisms. Chemical Communications, 52(5), 994-997.
    [54] Jiang, J., Zhao, K., Xiao, X., & Zhang, L. (2012). Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. Journal of the American Chemical Society, 134(10), 4473-4476.
    [55] Zhang, K. L., Liu, C. M., Huang, F. Q., Zheng, C., & Wang, W. D. (2006). Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Applied Catalysis B: Environmental, 68(3-4), 125-129.
    [56] Song, J. M., Mao, C. J., Niu, H. L., Shen, Y. H., & Zhang, S. Y. (2010). Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. CrystEngComm, 12(11), 3875-3881.
    [57] Kim, D., & Jung, D. (2017). Enhancement of photocatalytic activity over Bi2O3/black-BiOCl heterojunction. Chemical Physics Letters, 674, 130-135.
    [58] Tang, X., Ma, C., Liu, N., Liu, C., & Liu, S. (2018). Visible light β-Bi2O3/BiOCl heterojunction photocatalyst with highly enhanced photocatalytic activity. Chemical Physics Letters, 709, 82-87.
    [59] Wang, D. H., Gao, G. Q., Zhang, Y. W., Zhou, L. S., Xu, A. W., & Chen, W. (2012). Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale, 4(24), 7780-7785.
    [60] López, R., & Gómez, R. (2012). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 61, 1-7.
    [61] Henry, N., Evain, M., Deniard, P., Jobic, S., Abraham, F., & Mentré, O. (2005). [Bi2O2]2+ layers in Bi2O2(OH)(NO3): synthesis and structure determination. Zeitschrift für Naturforschung B, 60(3), 322-327.
    [62] Huang, H., He, Y., Li, X., Li, M., Zeng, C., Dong, F., ... & Zhang, Y. (2015). Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. Journal of Materials Chemistry A, 3(48), 24547-24556.
    [63] Imai, Y., Mukaida, M., & Tsunoda, T. (2001). Calculation of electronic energy and density of state of iron-disilicides using a total-energy pseudopotential method, CASTEP. Thin Solid Films, 381(2), 176-182.
    [64] Streicher, F., Sadewasser, S., & Lux-Steiner, M. C. (2009). Surface photovoltage spectroscopy in a Kelvin probe force microscope under ultrahigh vacuum. Review of Scientific Instruments, 80(1), 013907.
    [65] Han, Q., Pang, J., Wang, X., Wu, X., & Zhu, J. (2017). Synthesis of unique flowerlike Bi2O2 (OH)(NO3) hierarchical microstructures with high surface area and superior photocatalytic performance. Chemistry–A European Journal, 23(16), 3891-3897.
    [66] Yang, X., Sun, S., Cui, J., Yang, M., Luo, Y., & Liang, S. (2021). Synthesis, functional modifications, and diversified applications of hybrid BiOCl-based heterogeneous photocatalysts: a review. Crystal Growth & Design, 21(11), 6576-6618.
    [67] Keramidas, K. G., Voutsas, G. P., & Rentzeperis, P. I. (1993). The crystal structure of BiOCl. Zeitschrift für Kristallographie-Crystalline Materials, 205(1), 35-40.
    [68] Sillén, L. G., & Edstrand, M. (1942). On the Crystal Structure of Arppe's Bismuth Oxychloride, Bi24Ο31Cl10, and the Isomorphous Oxybromide (“Step-Lattice Oxyhalides”). Zeitschrift für Kristallographie-Crystalline Materials, 104(1-6), 178-196.
    [69] Eggenweiler, U., Keller, E., Krämer, V., Meyer, C. A., & Ketterer, J. (1998). Crystal structure of tribismuth tetraoxide chloride, Bi3O4Cl. Zeitschrift für Kristallographie-New Crystal Structures, 213(1-4), 735-735.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE