| 研究生: |
吳柏洋 Wu, Bo-Yang |
|---|---|
| 論文名稱: |
新式平面微型陀螺儀之設計與動態分析 Design and Dynamic Analysis of an Innovative Planar Micro-gyroscope |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 靈敏度 、微陀螺儀 、離線校正 、適應性力平衡順滑控制 |
| 外文關鍵詞: | Off-line Correction, Adaptive Force balancing Sliding Mode Controller, Micro-gyroscope, Sensitivity |
| 相關次數: | 點閱:73 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新型微陀螺儀設計,可同時量測三維之角速度激勵,藉由限制可動元件彼此的運動方向為正交,可降低驅動與感測模態之耦合(Coupling)現象,多質量塊之設計則可增加感測頻寬。 同時推導可動元件對於不同軸向角速度激勵之運動方程式,並以靈敏度分析設計尺寸參數。 製程使用SOI (Silicon-on-Insulator)晶圓與單一光罩對準,降低製程時可能發生的缺陷,提高重現性並可得到較佳的元件性質。 由於新型微陀螺儀之動態行為相當複雜且非線性,本文結合參數適應律(Parameter Adaptation Law)、力平衡控制(Force Balancing Control)以及順滑控制器(Sliding Mode Control),一方面節制可動元件之(角)位移,另一方面估測角速度激勵,同時針對參數不確定性加以補償。 本文所提出之適應性力平衡順滑控制器,除了利用李亞普諾夫直接法(Lyapunov Direct Method)證明受控體的穩定性以及估測誤差的收斂外,加上離線校正機制,由數值模擬更可見其優越的性能,在極短時間內量測到角速度激勵值。
An innovative micro-gyroscope design, which is capable of detecting three-dimension angular excitations, is proposed in this thesis. The coupling effect between drive mode and sense mode is reduced by restricting each movable element to move in direction orthogonal to each other. The sensing bandwidth is increased via distributed translational proof masses. The dynamic model for angular excitation in different axes is established. The geometry of different elements is designed by the aid of sensitivity analysis. For the fabrication of micro-gyroscope, a single-mask process based on SOI (Silicon-on-Insulator) wafers is presented and the traditional imperfections can be partially eliminated. Therefore, better mechanical property and higher repeatability can also be expected. Owing to the complicated and nonlinear dynamic property of the innovative micro-gyroscope, a controller including parameter adaptation law, force balancing control and sliding mode control is proposed. The adaptive force balancing sliding mode controller (AFBSMC) is able to not only regulate the (angular) displacement of each movable components but also precisely estimate the angular excitation and further compensate the parameter uncertainties. The Lyapunov direct method is employed to examine the stability for the controlled gyroscope. In order to improve the detection capability, convergence rate analysis and off-line correction are applied. The computer simulation results demonstrate the superior detection capability of AFBSMC .
[1] M. Abe, E. Shinohara, K. Hasegawa, S. Murata, and M. Esashi, "Trident-type Tuning Fork Silicon Gyroscope by the Phase Difference Detection," Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), vol., pp. 508-513, 2000.
[2] C. Acar and A. M. Shkel, "Nonresonant Micromachined Gyroscopes with Structural Mode-Decoupling," IEEE Sensors Journal, vol. 3, pp. 497-506, 2003.
[3] C. Acar and A. M. Shkel, "An Approach for Increasing Drive-Mode Bandwidth of MEMS Vibratory Gyroscopes," Journal of Microelectromechanical Systems, vol. 14, pp. 520-528, 2005.
[4] F. Ayazi and K. Najafi, "High Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology," Journal of Microelectromechanical Systems, vol. 9, pp. 288-294, 2000.
[5] C. Batur, T. Sreeramreddy, and Q. Khasawneh, "Sliding Mode Control of A Simulated MEMS Gyroscope," Portland, OR, United States, pp. 4160-4165, 2005.
[6] J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, and M. Weinberg, "Micromachined Comb-Drive Tuning Fork Rate Gyroscope," Fort Lauderdale, FL, USA, pp. 143-148, 1993.
[7] J. Bhardwaj, H. Ashraf, A. McQurarrie, “Dry Silicon Etching for MEMS,” Surface Technology Systems Limited, 1997
[8] R. Castro-Linares, J. Alvarez-Gallegos, and V. Vasquez-Lopez, "Sliding Mode Control and State Estimation for A Class of Nonlinear Singularly Perturbed Systems," Dynamics and Control, vol. 11, pp. 25-46, 2001.
[9] Y.-C. Chen, R. T. M'Closkey, T. A. Tran, and B. Blaes, "A Control and Signal Processing Integrated Circuit for the JPL-Boeing Micromachined Gyroscopes," IEEE Transactions on Control Systems Technology, vol. 13, pp. 286-300, 2005.
[10] W. A. Clark, Micromachined Vibratory Rate Gyroscopes, University of California Berkeley, Ph. D thesis, 1997.
[11] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, "Variable Structure Cintrol of Nonlinear Multivariable Systems: A Tutorial," Proceedings of the IEEE, vol. 76, pp. 212-232, 1988.
[12] L. Dong and R. P. Leland, "The Adaptive Control System of A MEMS Gyroscope with Time-Varying Rotation Rate," Portland, OR, United States, pp. 3592-3597, 2005.
[13] W. Geiger, W. U. Butt, A. Gaisser, J. Frech, M. Braxmaier, T. Link, A. Kohne, P. Nommensen, H. Sandmaier, and W. Lang, "Decoupled Microgyros and the Design Principle DAVED," Interlaken, pp. 170-173, 2001.
[14] W. Geiger, W. U. Butt, A. Gaisser, J. Frech, M. Braxmaier, T. Link, A. Kohne, P. Nommensen, H. Sandmaier, W. Lang, and H. Sandmaier, "Decoupled Microgyros and the Design Principle DAVED," Sensors and Actuators, A: Physical, vol. 95, pp. 239-249, 2002.
[15] P. Greiff, B. Boxenhorn, T. King, and L. Niles, "Silicon Monolithic Micromechanical Gyroscope," Tech. Dig. 6th Int. Conf. Solid-State Sensors and Actuators (Transducers’91), San Francisco, CA, USA, pp. 966-968, 1991.
[16] A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, "Recent Advances in Silicon Etching for MEMS Using the ASE Process," Sensors and Actuators, A: Physical, vol. 74, pp. 13-17, 1999.
[17] R. P. Leland, "Adaptive Control of a MEMS Gyroscope Using Lyapunov Methods," IEEE Transactions on Control Systems Technology, vol. 14, pp. 278-283, 2006.
[18] R. T. M'Closkey, A. Vakakis, and R. Gutierrez, "Mode Localization Induced by a Nonlinear Control Loop," Nonlinear Dynamics, vol. 25, pp. 221-236, 2001.
[19] R. L. Mott, Machine Elements in Mechanical Design 3rd ed., Prentice Hall, Upper Saddle River, N.J., 1999.
[20] C. C. Painter and A. M. Shkel, "Active Structural Error Suppression in MEMS Vibratory Rate Integrating Gyroscopes," IEEE Sensors Journal, vol. 3, pp. 595-606, 2003.
[21] J. B. Park, J. H. Lee, and B. H. Lee, "Online Turnover-Free Control for a Mobile Agent with a Terrain Prediction Sensor," Journal of Field Robotics, vol. 23, pp. 59-77, 2006.
[22] S. Park and R. Horowitz, "Adaptive Control for the Conventional Mode of Operation of MEMS Gyroscopes," Journal of Microelectromechanical Systems, vol. 12, pp. 101-108, 2003.
[23] S. Park and R. Horowitz, "New Adaptive Mode of Operation for MEMS Gyroscopes," Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 126, pp. 800-810, 2004.
[24] S. Park, “Adaptive Control Strategies for MEMS Gyroscopes,” University of California Berkeley, Ph. D thesis, 2000.
[25] S. Rajendran and K. M. Liew, "Design and Simulation of an Angular-Rate Vibrating Microgyroscope," Sensors and Actuators, A: Physical, vol. 116, pp. 241-256, 2004.
[26] S. Sastry and M. Bodson, Adaptive Control :Stability, Convergence, and Robustness, Prentice Hall, Englewood Cliffs, N.J., 1989.
[27] A. M. Shkel, R. Horowitz, A. A. Seshia, S. Park, and R. T. Howe, "Dynamics and Control of Micromachined Gyroscopes," San Diego, CA, USA, pp. 2119-2124, 1999.
[28] T. K. Tang, R. C. Gutierrez, C. B. Stell, V. Vorperian, G. A. Arakaki, J. T. Rice, W. J. Li, I. Chakraborty, K. Shcheglov, J. Z. Wilcox, and W. J. Kaiser, "Packaged Silicon MEMS Vibratory Gyroscope for Microspacecraft," Proc. 223 IEEE Micro Electro Mechanical Systems Workshop (MEMS’97), Nagoya, Jpn, pp. 500-505, 1997.
[29] D.-H. Tsai and W. Fang, "Design and Simulation of a Dual-Axis Sensing Decoupled Vibratory Wheel Gyroscope," Sensors and Actuators, A: Physical, vol. 126, pp. 33-40, 2006.