簡易檢索 / 詳目顯示

研究生: 江寶田
Chiang, Bao-Tian
論文名稱: 以合成資料與深度學習進行震後建物損壞分級
Synthetic Data and Deep Learning for Post-earthquake Building Damage Assessment
指導教授: 侯琮欽
Hou, Tsung-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 102
中文關鍵詞: 建築損壞模擬自動化評估建築損壞程度點雲深度學習PointNet
外文關鍵詞: Structural damage simulation, automated assessment, building damage classification, PointNet, deep learning
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建築的抗震能力一直以來都是土木工程領域的重要研究議題,對於依據舊版建築設計規範興建的老舊建築而言,地震帶來的結構損壞更是不容忽視,為提升災後初步評估之效率與準確性,本研究將建立一套基於深度學習的建築損壞等級分類模型,以降低人力及時間成本,並將更多資源投入在災後救援與重建工作中。
    真實世界的人工標註資料集非常缺乏,因此採用合成資料是個可行的替代方案,本研究使用基於離散元素法的Blender物理引擎結合Bullet Constraint Builder 模組來模擬地震對建築造成的不同程度損壞。透過輸入各種人工地震參數,生成多組具代表性的建築損壞模型,依據其損壞程度進行人工標註分類,之後將其轉換為點雲格式並建立損壞建築資料集。接著,本研究使用PointNet深度學習模型來進行訓練與驗證,評估其於地震後建築損壞分類任務中的效能和可能性。

    The seismic damage of buildings has been a critical concern for humanity. For older buildings constructed under outdated design codes, the potential structural damage caused by earthquakes is especially significant. To enhance the efficiency of post-earthquake assessments, this study would like to develop a point-cloud-based deep learning model for automation of classification for evaluating the damage levels of buildings. This model may reduce labor and time costs, enabling more resources to invest in search and rescue.
    Due to the scarcity of human-annotated data, this research uses synthetic data as the training dataset for the deep learning model. Blender, along with the Bullet Constraint Builder (BCB), which is based on the Discrete Element Method (DEM), is used to simulate various levels of seismic damage on building models. By varying a set of artificial ground‐motion parameters, we generate many damaged building models, each of which will be converted into a point cloud after manually annotation according to its damage level. This labeled dataset then serves as the basis for training the PointNet framework to classify post‐earthquake damage levels. Model performance is evaluated against realistic scenarios to assess both its predictive accuracy and practical applicability.
    The research workflow encompasses the collection of structural parameters from aging buildings, manual annotation of damage levels, construction of damage-level-specific datasets, and modification of open-source code to accommodate the proposed methodology.

    摘要 I 誌謝 XV 目錄 XVI 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究架構與流程 2 1.3 論文章節安排 2 1.4 研究限制與前提假設 3 第二章 文獻回顧 5 2.1 地震建築損壞模擬 5 2.1.1 離散元素法 5 2.1.2 Blender 及Bullet Constraint Builder (BCB) 插件 5 2.2 傳統建築物地震後損壞等級方法 6 2.2.1 FEMA建築損壞等級評估制度(美國) 6 2.2.2 台灣建築損壞評估制度 7 2.2.3 國內外制度比較 7 2.3 應用深度學習方法 8 2.3.1 二維圖像深度學習 8 2.3.2 DGCNN 9 2.3.3 PointNet 10 2.3.4 PointNet應用於建築損壞檢測 11 2.3.5 應用點雲於震後建築損害評估 11 2.4 文獻回顧小結 11 第三章 研究方法 23 3.1 研究流程與架構 23 3.2 損壞建築資料集建立 23 3.2.1 合成資料之建築結構參數與材料性質 23 3.2.2 地震模擬及震後建築損壞人工標註 26 3.2.3 損壞模型資料轉換為點雲格式 27 3.3 應用PointNet於建築損壞等級分類任務 28 3.3.1 點雲輸入預處理 28 3.3.2 對齊操作:T-Net 29 3.3.3 特徵萃取操作:多層感知機(Multi-Layer Perceptron, MLP) 30 3.3.4 全域特徵聚合:最大池化(Max Pooling) 31 3.3.5 分類輸出層與損失函數 31 3.4 超參數(Hyperparameter)選擇 33 3.4.1 最佳化器與學習率 33 3.4.2 批次大小與訓練週期 35 3.4.3 神經元丟失率(dropout ratio) 35 3.5 深度學習模型效能評估指標 36 3.5.1 精確率與召回率 36 3.5.2 F1-score與混淆矩陣 37 3.6 究方法小結 38 第四章 成果分析與討論 48 4.1 模型訓練流程 48 4.2 模型初始超參數與成果 48 4.3 模型各項評估指標 50 4.4 測試模型之泛化能力 50 4.5 其他超參數最佳化實驗 52 4.5.1 批次大小 52 4.5.2 神經元丟失率 53 4.5.3 下採樣點數 53 4.6 研究成果小結 54 第五章 結論與建議 72 5.1 結論 72 5.2 建議與研究侷限性 73 參考文獻 75 附錄 78

    [1] L. Manchun , C. Liang, Gong.JianYa, L. Yongxue, C, Zhenjie, L. Feixue, C.Gang, C. Dong, Song. Xiaogang. " Post-earthquake assessment of building damage degree using LiDAR data and imagery". Science in China Series E: Technological Sciences. 51. 133-143. 10.1007/s11431-008-6014-1,2009.
    [2] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980, 2014.
    [3] Z. Lu, X. He, and Y. Zhou, "Discrete element method-based collapse simulation, validation and application to frame structures," Structure and Infrastructure Engineering, vol. 14, no. 5, pp. 538-549, 2017.
    [4] FEMA, "Post-disaster Building Safety Evaluation Guidance – Report on the Current State of Practice, including Recommendations Related to Structural and Nonstructural Safety and Habitability," FEMA -2055, 2019.
    [5] A. B. Khajwalcheng and N. Arash, “Multi-view deep learning for reliable post-disaster damage classification,” arXiv:2201.12345, Jan. 2022.
    [6] Community, B. O. "Blender – a 3D modeling and rendering package, "Stichting Blender Foundation. Blender 2.79b User Manual, 2018.
    [7] J. Xu, P. Khaitan, "Machine learning-based damage assessment for disaster relief," Google Research, 2020.
    [8] M. Díaz-Medina, J. M. Fuertes, R. J. Segura-Sánchez, M. Lucena, and C. J. Ogayar-Anguita, "LiDAR attribute based point cloud labeling using CNNs with 3D convolution layers," Computers & Geosciences, vol. 180, p. 105453, 2023.
    [9] T. Hackel, J. D. Wegner, K. Schindler, "Semantic3D.net: A new large-scale point cloud classification benchmark, " ETH Zurich, 2017.
    [10] UN OCHA. "Bullet Constraints Builder (BCB) for Blender." GitHub Repository, 2018.
    [11] R. Q. Charles, H. Su, M. Kaichun and L. J. Guibas, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 77-85, doi: 10.1109/CVPR.2017.16.
    [12] D. Maturana and S. Scherer, "VoxNet: A 3D Convolutional Neural Network for real-time object recognition," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, pp. 922-928, doi: 10.1109/IROS.2015.7353481.
    [13] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, " 3D ShapeNets: A deep representation for volumetric shapes, " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
    [14] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller. " Multi-view convolutional neural networks for 3d shape recognition". In Proc. ICCV, to appear, 2015.
    [15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical feature learning on point sets in a metric space,” arXiv:1706.02413, Jun. 2017.
    [16] H. Xiu, T. Shinohara, M. Matsuoka, M. Inoguchi, K. Kawabe, K. Horie. "Collapsed Building Detection Using 3D Point Clouds and Deep Learning". Remote Sensing. 2020
    [18] Y. Eldar, M. Lindenbaum, M. Porat and Y. Y. Zeevi, "The Farthest Point Strategy for Progressive Image Sampling," Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 2 - Conference B: Computer Vision & Image Processing. (Cat. No.94CH3440-5), Jerusalem, Israel, 1994, pp. 93-97 vol.3, doi: 10.1109/ICPR.1994.577129.
    [19] A. Bagheri, M. Rezaei, M. Noori, A. M. Nezhad, and M. Hammad, "As-inspected modeling of concrete surface defects from raw point clouds using deep learning," Automation in Construction, vol. 157, 2024.
    [20] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, "Dynamic Graph CNN for learning on point clouds," arXiv, 2019.
    [21] L. Winiwarter, A. M. Esmorís Pena, H. Weiser, K. Anders, J. Martínez Sánchez, M. Searle, and B. Höfle, “Virtual laser scanning with HELIOS++: A novel take on ray tracing–based simulation of topographic full-waveform 3D laser scanning,” Remote Sensing of Environment, vol. 269, p. 112772, 2022.
    [22] 鄭亦翔,「中高層建築倒塌資料庫模擬與驗證」,國立成功大學土木工程研究所碩士論文,台南市,2022年。
    [23] 內政部國土管理署,「地震災後建築物緊急評估明細表」,內政部國土管理署,台北市,2023年版。
    [24] 林育正,「點雲建築資訊模型倒塌模式生成與預測」,國立成功大學土木工程研究所碩士論文,台南市,2018年。
    [25] 吳威霖,「以點雲資料進行倒塌建物構件模組之快速重建」,國立成功大學土木工程研究所碩士論文,台南市,2022年。
    [26] 黃士懷,「中高層建築混合倒塌與存活空間模擬」,國立成功大學土木工程研究所碩士論文,台南市,2024年。
    [27] 財團法人住宅地震保險基金,「住宅建築物地震毀損程度評估方法及判定準則」,財團法人住宅地震保險基金,2022年版。

    無法下載圖示 校內:2030-08-01公開
    校外:2030-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE