簡易檢索 / 詳目顯示

研究生: 黃博煒
Huang, Po-Wei
論文名稱: 以BioWin模擬軟體建立都市污水處理廠生物除氮系統最佳化操作模式
Optimization of biological nitrogen removal in full-scale municipal WWTPs using BioWin simulation tool
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 111
中文關鍵詞: 活性污泥模式生物除氮系統硝化脫硝A/O 系統O/A 系統
外文關鍵詞: ASM, biological nitrogen removal process, nitrification and denitrification, A/O process, O/A process
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將利用活性污泥模式(ASM) 架構之商用軟體 BioWin找尋出四座都市污水廠之最佳化除氮操作方案。 ASM由於可在不同之操作條件下提供準確地模擬結果,因此近年來已被廣泛應用於污水廠的興建及優化當中。本研究將對四座都市污水廠的水質進行長期監測,以便掌握污水廠之水質變異情況 。 此外,將進行一系列批次試驗包含硝化批次 、 外加碳源批次 、缺氧脫硝批次等以獲得 ASM模擬所需之動力及化學劑量參數。待掌握四座污水廠之水質 及動力參數後,便 會以前述實驗所獲得之數據進行模式驗證,本研究採用 mean relative error (MRE) 作為模式預測準確性的參考指標。根據動態模擬的結果, 在 以前述實驗所獲得之參數進行模擬,且不需任何調整的情況下,皆能使誤差控制在可接受的範圍內(MRE<20%)。這也說明了經由前述批次試驗所求取的參數具有相當的參
    考性。最後將設定不同的操作情境以找尋出最適合每座實廠的除氮操作模型。 操作變因將包含 :進流量,操作型態 (A/O 或 O/A),內部迴流量,槽體操作大小,甲醇添加量等等 ;並綜合評估操作成本,總氮去除率,放流水標準等因素來決定最適當 之操作條件。 根據模擬結果,在低進流有機負荷之下 (官田,柳營,嘉義廠 O/A 操作型態可在較低操作成本之下達成較高之總氮去除。另一方面, A/O 操作型態則較適用於高有機物含量之進流水 (基隆廠 )。

    The research would use activated sludge model (ASM) based simulation tool BioWin to figure out the optimum biological nitrogen removal (BNR) process for four municipal wastewater treatment plants (WWTPs).
    We would conduct long-term monitoring for each plant to know the variation for water quality. Besides, a series of batch experiments including nitrification batch, carbon addition batch and denitrification batch would be conducted to obtain the ASM kinetic/stoichiometric parameters. The data obtained from the previous experiments would be used for model validation, mean relative error (MRE) would be chosen to be the indicator to check model prediction accuracy. According to the dynamic simulation results using the previous data without any adjustment, the error could be controlled within an acceptable range (MRE<20%), which indicates that the ASM parameters obtained from the previous experiments are reliable.
    In the last stage, different operating scenarios would be set to figure out the optimum BNR process for each plant. Operational variables include inflow, operation type (A/O or O/A), internal recycling, tank size, methanol addition, etc. After evaluating operating costs, total nitrogen removal rate, and effluent discharge standard, the optimum operation mode would be decided. According to the simulation results, O/A operation is more suitable for those plants with low organic loading rate, on the contrary, if the organic matter in the influent increased, the A/O operation may have an advantage over O/A operation.

    摘要 I Abstract II Acknowledgements III Table of Content IV List of Tables VII List of Figures IX 1 Chapter 1 Introduction 1 2 Chapter 2 Literature Review 3 2.1 Wastewater characteristics for municipal wastewater 3 2.2 Biological nitrogen removal process (BNR) 4 2.2.1 Nitrification 5 2.2.2 Denitrification 8 2.2.3 Simultaneous Nitrification/Denitrification (SND) 10 2.2.4 Critical comparison of two-stage BNR process 11 2.3 Activated Sludge Model (ASM) 14 2.3.1 Activated Sludge Model calibration procedure 15 2.3.2 ASM application in full-scale WWTPs 17 2.4 Molecular biotechnology 19 2.4.1 Introduction 19 2.4.2 Real-time quantitative polymerase chain reaction (qPCR) 20 3 Chapter 3 Materials and Methods 22 3.1 Research framework 22 3.2 Water quality analysis 23 3.2.1 Routine general water quality analysis 23 3.3 Batch test for ASM parameters 26 3.3.1 Nitrification batch test 27 3.3.2 Carbon addition aerobic batch test 27 3.3.3 Denitrification batch test 28 3.3.4 Batch test for the decay rate 29 3.4 Other feasibility batch tests for optimization of WWTP 32 3.4.1 Simultaneous nitrification and denitrification (SND) 32 3.4.2 Particulate compounds hydrolysis test 33 3.5 Using the BioWin simulation tool to optimize the biological nitrogen removal process for four different WWTPs 34 3.5.1 BioWin introduction 34 3.5.2 BioWin simulation process 35 3.6 Molecular biotechnology 43 3.6.1 DNA extraction 43 3.6.2 Real-time polymerase chain reaction 45 4 Chapter 4 Result and Discussion 48 4.1 Wastewater characteristic 48 4.1.1 Routine normal water quality test 48 4.1.2 COD fraction analysis 50 4.2 Batch experiments for ASM parameters51 4.2.1 Nitrification Batch 51 4.2.2 Carbon addition batch experiment 54 4.2.3 Denitrification Batch 57 4.2.4 Decay rate Batch 59 4.2.5 Summary for ASM parameters in batch experiments 60 4.3 Other feasibility batch test 62 4.3.1 Simultaneous nitrification and denitrification test (SND) 62 4.3.2 Particulate compound hydrolysis test 64 4.4 Simulation results for four WWTPs 66 4.4.1 steady-state and dynamic simulation for four WWTPs 66 4.4.2 Optimization of the BNR of four municipal WWTPs 75 4.4.3 Optimum BNR operation for four WWTPs 96 4.4.4 Conclusion for optimization of four WWTPs 99 4.5 Future application 101 4.6 Molecular biotechnology 103 5 Chapter 5 Conclusions and Suggestions 104 5.1 Conclusions 104 5.2 Suggestions 105 6 Chapter 6 References 106

    Abdel-Halim, H., Zaghloul, M., & Elawwad, A. (2017). Simulation of municipal-industrial full scale WWTP in an arid climate by application of ASM3. Journal of Water Reuse and Desalination, 7(1), 37-44. doi:10.2166/wrd.2016.154
    Ahn, Y.-H. (2006). Sustainable nitrogen elimination biotechnologies: A review. Process Biochemistry, 41(8), 1709-1721. doi:10.1016/j.procbio.2006.03.033
    Anthonisen, A. C., Loehr, R. C., Prakasam, T., & Srinath, E. (1976). Inhibition of nitrification by ammonia and nitrous acid. Journal (Water Pollution Control Federation), 835-852.
    Antoniou, P., Hamilton, J., Koopman, B., Jain, R., Holloway, B., Lyberatos, G., & Svoronos, S. (1990). Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Research, 24(1), 97-101.
    Baeza, J., Gabriel, D., & Lafuente, J. (2004). Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP). Process Biochemistry, 39(11), 1615-1624.
    Bashar, R., Karthikeyan, K., & Noguera, D. R. (2021). Simulation-based analysis of full-scale implementation of energy neutral wastewater treatment plants. Journal of Water Process Engineering, 40, 101875.
    Beccari, M., Passino, R., Ramadori, R., & Tandoi, V. (1983). Kinetics of dissimilatory nitrate and nitrite reduction in suspended growth culture. Journal (Water Pollution Control Federation), 58-64.
    Brdjanovic, D., Mithaiwala, M., Moussa, M. S., Amy, G., & van Loosdrecht, M. C. (2007). Use of modelling for optimization and upgrade of a tropical wastewater treatment plant in a developing country. Water Sci Technol, 56(7), 21-31. doi:10.2166/wst.2007.675
    Butler, D., Friedler, E., & Gatt, K. (1995). Characterising the quantity and quality of domestic wastewater inflows. Water Science and Technology, 31(7), 13-24.
    Chiu, Y.-C., & Chung, M.-S. (2003). Determination of optimal COD/nitrate ratio for biological denitrification. International Biodeterioration & Biodegradation, 51(1), 43-49.
    Chiu, Y.-C., Lee, L.-L., Chang, C.-N., & Chao, A. C. (2007). Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International Biodeterioration & Biodegradation, 59(1), 1-7. doi:10.1016/j.ibiod.2006.08.001
    Downing, A. (1964). Effect of inhibitors on nitrification in the activated-sludge process. J. Proc. Inst. Purif., 537-637.
    Ekama, G., Dold, P., & Marais, G. v. R. (1986). Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems. Water Science and Technology, 18(6), 91-114.
    Elawwad, A. (2018). Optimized biological nitrogen removal of high-strength ammonium wastewater by activated sludge modeling. Journal of Water Reuse and Desalination, 8(3), 393-403. doi:10.2166/wrd.2017.200
    Elawwad, A., Matta, M., Abo-Zaid, M., & Abdel-Halim, H. (2019). Plant-wide modeling and optimization of a large-scale WWTP using BioWin’s ASDM model. Journal of Water Process Engineering, 31. doi:10.1016/j.jwpe.2019.100819
    Ferguson, S. J. (1994). Denitrification and its control. Antonie van Leeuwenhoek, 66(1), 89-110.
    Gujer, W., Henze, M., Mino, T., & Van Loosdrecht, M. (1999). Activated sludge model No. 3. Water Science and Technology, 39(1), 183-193.
    Hanaki, K., Wantawin, C., & Ohgaki, S. (1990). Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Research, 24(3), 289-296.
    Henze, M., Gujer, W., Mino, T., & van Loosdrecht, M. C. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3: IWA publishing.
    Henze, M., Holm Kristensen, G., & Strube, R. (1994). Rate-capacity characterization of wastewater for nutrient removal processes. Water Science and Technology, 29(7), 101-107.
    Hulsbeek, J., Kruit, J., Roeleveld, P., & Van Loosdrecht, M. (2002). A practical protocol for dynamic modelling of activated sludge systems. Water Science and Technology, 45(6), 127-136.
    Knowles, R. (1982). Denitrification. Microbiological reviews, 46(1), 43-70.
    Liwarska-Bizukojc, E., & Biernacki, R. (2010). Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software. Bioresour Technol, 101(19), 7278-7285. doi:10.1016/j.biortech.2010.04.065
    Liwarska-Bizukojc, E., Biernacki, R., Gendaszewska, D., & Ledakowicz, S. (2013). Improving the operation of the full scale wastewater treatment plant with use of a complex activated sludge model. Environment Protection Engineering, 39(1).
    Liwarska-Bizukojc, E., Olejnik, D., Biernacki, R., & Ledakowicz, S. (2011). Calibration of a complex activated sludge model for the full-scale wastewater treatment plant. Bioprocess Biosyst Eng, 34(6), 659-670. doi:10.1007/s00449-011-0515-1
    Münch, E. V., Lant, P., & Keller, J. (1996). Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Research, 30(2), 277-284.
    Mamais, D., Jenkins, D., & Prrr, P. (1993). A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater. Water Research, 27(1), 195-197.
    Matějů, V., Čižinská, S., Krejčí, J., & Janoch, T. (1992). Biological water denitrification—a review. Enzyme and microbial technology, 14(3), 170-183.
    Mokhayeri, Y., Riffat, R., Murthy, S., Bailey, W., Takacs, I., & Bott, C. (2009). Balancing yield, kinetics and cost for three external carbon sources used for suspended growth post-denitrification. Water Science and Technology, 60(10), 2485-2491.
    Oleyiblo, O. J., Cao, J., Feng, Q., Wang, G., Xue, Z., & Fang, F. (2015). Evaluation and improvement of wastewater treatment plant performance using BioWin. Chinese Journal of Oceanology and Limnology, 33(2), 468-476. doi:10.1007/s00343-015-4108-8
    Orhon, D., & Çokgör, E. U. (1997). COD fractionation in wastewater characterization—the state of the art. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 68(3), 283-293.
    Orhon, D., Sözen, S., & Artan, N. (1996). The effect of heterotrophic yield on the assessment of the correction factor for anoxic growth. Water Science and Technology, 34(5-6), 67-74.
    Painter, H. A. (2013). Microbial transformations of inorganic nitrogen. Paper presented at the Proceedings of the Conference on Nitrogen As a Water Pollutant.
    Pinzón Pardo, A. L., Brdjanovic, D., Moussa, M. S., López-Vázquez, C. M., Meijer, S. C. F., Van Straten, H. H. A., . . . Van Loosdrecht, M. C. M. (2007). Modelling of an Oil Refinery Wastewater Treatment Plant. Environmental Technology, 28(11), 1273-1284. doi:10.1080/09593332808618889
    Pochana, K., & Keller, J. (1999). Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology, 39(6), 61-68.
    Ramdani, A., Dold, P., Deleris, S., Lamarre, D., Gadbois, A., & Comeau, Y. (2010). Biodegradation of the endogenous residue of activated sludge. Water Res, 44(7), 2179-2188. doi:10.1016/j.watres.2009.12.037
    Rout, P. R., Shahid, M. K., Dash, R. R., Bhunia, P., Liu, D., Varjani, S., . . . Surampalli, R. Y. (2021). Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. Journal of Environmental Management, 296, 113246.
    Rout, P. R., Shahid, M. K., Dash, R. R., Bhunia, P., Liu, D. Z., Varjani, S., . . . Surampalli, R. Y. (2021). Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. Journal of Environmental Management, 296. doi:10.1016/j.jenvman.2021.113246
    Sharma, B., & Ahlert, R. (1977). Nitrification and nitrogen removal. Water Research, 11(10), 897-925.
    Sin, G., Van Hulle, S. W., De Pauw, D. J., van Griensven, A., & Vanrolleghem, P. A. (2005). A critical comparison of systematic calibration protocols for activated sludge models: a SWOT analysis. Water Res, 39(12), 2459-2474. doi:10.1016/j.watres.2005.05.006
    Sun, S. P., Nacher, C. P. I., Merkey, B., Zhou, Q., Xia, S. Q., Yang, D. H., . . . Smets, B. F. (2010). Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review. Environmental Engineering Science, 27(2), 111-126. doi:10.1089/ees.2009.0100
    Van Loosdrecht, M., Lopez-Vazquez, C., Meijer, S., Hooijmans, C., & Brdjanovic, D. (2015). Twenty-five years of ASM1: past, present and future of wastewater treatment modelling. Journal of Hydroinformatics, 17(5), 697-718.
    Vanrolleghem, P. A., Insel, G., Petersen, B., Sin, G., De Pauw, D., Nopens, I., . . . Gernaey, K. (2003). A Comprehensive Model Calibration Procedure for Activated Sludge Models. Proceedings of the Water Environment Federation, 2003(9), 210-237. doi:10.2175/193864703784639615
    Viviani, G., Vanrolleghem, P. A., Cosenza, A., & Mannina, G. (2011). A practical protocol for calibration of nutrient removal wastewater treatment models. Journal of Hydroinformatics, 13(4), 575-595. doi:10.2166/hydro.2011.041
    Wijaya, I. M. W., & Soedjono, E. S. (2018). Domestic wastewater in Indonesia: challenge in the future related to nitrogen content. Geomate Journal, 15(47), 32-41.
    Wu, J., Yan, G., Zhou, G., & Xu, T. (2014). Wastewater COD biodegradability fractionated by simple physical–chemical analysis. Chemical Engineering Journal, 258, 450-459. doi:10.1016/j.cej.2014.07.106
    Xu, S., Wu, X., & Lu, H. (2021). Overlooked nitrogen-cycling microorganisms in biological wastewater treatment. Frontiers of Environmental Science & Engineering, 15(6), 133. doi:10.1007/s11783-021-1426-2
    Zhu, G., Peng, Y., Li, B., Guo, J., Yang, Q., & Wang, S. (2008). Biological removal of nitrogen from wastewater. Reviews of environmental contamination and toxicology, 159-195.

    無法下載圖示 校內:2027-03-31公開
    校外:2027-03-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE