| 研究生: |
楊可安 Ashrie Yacab |
|---|---|
| 論文名稱: |
應用冷大氣電漿與電漿活化水降解咖啡豆上赭麴毒素A及其對物化性質之影響 Using cold atmospheric plasma and plasma activated water on coffee beans to reduce ochratoxin A and the effects on physicochemical properties |
| 指導教授: |
陳秀玲
Chen, Hsiu-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 食品安全衛生暨風險管理研究所 Department of Food Safety / Hygiene and Risk Management |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 赭麴毒素A 、電漿活化水 、冷大氣電漿 、烘焙 、欄柵介入 |
| 外文關鍵詞: | Ochratoxin A, plasma-activated water, non-thermal plasma, roasting, hurdle intervention |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
冷大氣電漿(Non-thermal plasma, NTP)作為一種新型的非熱加工技術,因其具有食品去汙的能力,像是黴菌毒素的降解,在食品產業中已被廣泛研究。在本研究中,透過大氣常壓噴射流產生NTP及電漿活化水(Plasma-activated water, PAW),並評估兩者的性質,包含酸鹼值(pH value)、導電度(Electric conductivity, EC)及氧化還原能力(Oxidation-reduction potential, ORP)。此外,透過使用NTP及PAW等冷大氣電漿技術處理人工污染的綠咖啡豆2分鐘,以探討黴菌毒素(Ochratoxin A , OTA)的降解及咖啡豆品質的影響。
接著,藉由使用PAW及NTP作為介入處理並結合烘焙作為新方法,將咖啡豆在180 °C和200 °C下烘焙5、8及12分鐘以觀察OTA降解情形以及烘焙後咖啡豆品質的變化。結果顯示,NTP 在OES (Optical emission spectrometry, OES) 的偵測結果中顯示其存在氮氧化物、羥基自由基、含氮物質和氧原子,而 PAW 特性表明酸性環境 (pH 2.5),EC (1153 µs/cm) 和 ORP (620 mV) 增加。此外,經由不同冷大氣電漿的結合處理(NTP、PAW、NTP-PAW 和PAW-NTP),可觀察到綠咖啡豆中的OTA 濃度顯著降低,實現了37.66-51.80% 的降解能力,其中PAW-NTP 呈現出最好的結果。除了單一NTP處理有些許的顏色變化外,其他冷大氣電漿處理的顏色、咖啡因含量、總酚含量、總類黃酮含量及DPPH抗氧化能力幾乎無明顯的差異。結果顯示,單一處理NTP和PAW顯示揮發性化合物的總峰面積較低,而NTP-PAW和PAW-NTP的綜合處理後獲得較高的揮發性化合物的總峰面積。
此外,藉由電漿技術作為欄柵介入的結果顯示,使用NTP及PAW處理的樣品分別在180°C 和200°C下烘烤5-12分鐘時,OTA 濃度顯著降低,降解效率分別為49.19-66.83% 和54.05-77.14%。而僅以180℃ 和200℃ 烘烤5-12分鐘時(沒有電漿介入處理),OTA降解效率分別達到3.54-39.26%和20.99-53.45%。至於品質的部分,PAW-NTP 與烘焙結合的欄柵技術結果顯示,不同烘焙條件下,咖啡豆的顏色、咖啡因含量、TPC、TFC 和DPPH 清除活性沒有負面影響,除了電漿處理後的咖啡樣品在180°C 烘焙12 分鐘後,咖啡因含量有輕微程度的降低,而在 200°C 下烘焙 12 分鐘後,DPPH 清除能力也有些許下降的趨勢。此外,與未經處理的樣品相比,它對揮發性化合物的影響不同。在 180 ℃ 下烘烤 12 分鐘時,其總波峰面積較低,而在 200 ℃ 下烘烤 12 分鐘時,則觀察到較高的總波峰面積。
總結,本研究成功證明冷大氣電漿處理對OTA降解效果的有效性,並同時保留咖啡豆的物化特性,證明PAW-NTP 與烘焙結合處理可以更有效地降低OTA 濃度,同時在品質表現方面也有一定的貢獻程度。這項研究將為食品產業中應用冷電漿技術降解黴菌毒素提供了一種新方法,同時對於咖啡產業中使用此技術以提高咖啡品質和減少OTA含量具有重要意義。
Non-thermal plasma is a novel non-thermal technology which has been widely studied in the food industry for its promising effects on food decontamination including mycotoxin decontamination. In this study, non-thermal plasma was generated through an atmospheric pressure plasma jet using atmospheric air to produce gaseous NTP and PAW in which NTP diagnostic and PAW properties including pH, EC and ORP were evaluated. Moreover, the effects of different non-thermal plasma-based treatments on OTA reduction and quality of green coffee beans were investigated by treating artificially contaminated green coffee beans for 2 minutes under each treatment. Then, a novel approach using PAW plus NTP treatment as a hurdle intervention combined with roasting was evaluated. The effects of this hurdle intervention on OTA reduction and quality of roasted coffee beans were investigated using temperatures of 180ºC and 200ºC and roasting for 5, 8 and 12 minutes. Results revealed the presence of nitride oxide, hydroxyl radicals, nitrogen species and oxygen atoms in the OES of gaseous NTP while PAW properties indicated an acidic environment (pH 2.5) with an increase in EC (1153 µs/cm) and ORP (620 mV). In addition, non-thermal plasma based-treatments (NTP, PAW, NTP-PAW and PAW-NTP) significantly decreased OTA concentration in green coffee samples achieving reduction efficiencies of 37.66-51.80% with PAW-NTP achieving maximum reductions. No negative effects were observed in color, caffeine content, total phenolic content, total flavonoid content, and DPPH scavenging activity, except for NTP treatment which showed distinct color changes. Gaseous NTP and PAW treatments illustrated a lower total peak area for aroma volatile compounds while NTP-PAW and PAW-NTP obtained higher total peak area for aroma volatile compounds as compared to control samples. Furthermore, results from the hurdle intervention revealed significant reduction in OTA concentration achieving reduction efficiencies of 49.19-66.83% and 54.05-77.14% when non-thermal plasma treated samples were roasted at 180ºC and 200 ºC respectively, for 5-12 minutes while untreated roasted samples achieved reduction efficiencies of 3.54-39.26% and 20.99-53.45% when roasted at 180ºC and 200ºC respectively, for 5-12 minutes. Finally, the hurdle intervention using PAW-NTP combined with roasting showed no negative effects on color, caffeine content, TPC, TFC and DPPH scavenging activity when roasted under different roasting conditions expect for treated coffee samples roasted at 180ºC for 12 minutes which showed minimal reduction in caffeine content and treated coffee samples roasted at 200ºC for 12 minutes which showed minimal reduction in DPPH scavenging activity. In addition, it affected volatile compounds differently as compared to the untreated samples. However, it showed a lower total peak area when roasted at 180 ºC for 12 minutes while a higher total peak was observed when roasted at 200 ºC for 12 minutes. In conclusion, this study successfully demonstrated the effectiveness of non-thermal plasma treatments on OTA reduction while retaining the physicochemical properties of green coffee beans as well as demonstrating the effectiveness of combining PAW-NTP with roasting treatment on OTA reduction while positively contributing to the quality properties of roasted coffee bean. This study provides a new approach for using non-thermal plasma technology for the mitigation of mycotoxin in the food industry as well as important implications for the use of gaseous non-thermal plasma and plasma-activated water in the coffee industry for improving coffee quality and reducing OTA content.
Adebo, O. A., Molelekoa, T., Makhuvele, R., Adebiyi, J. A., Oyedeji, A. B., Gbashi, S., Adefisoye, M. A., Ogundele, O. M., & Njobeh, P. B. (2020). A review on novel non‐thermal food processing techniques for mycotoxin reduction. International Journal of Food Science & Technology, 56(1), 13-27. https://doi.org/10.1111/ijfs.14734
Adhikari, M., Isaac, E. L., Paterson, R. R. M., & Maslin, M. A. (2020). A Review of Potential Impacts of Climate Change on Coffee Cultivation and Mycotoxigenic Fungi. Microorganisms, 8(10). https://doi.org/10.3390/microorganisms8101625
Agriopoulou, S., Stamatelopoulou, E., & Varzakas, T. (2020). Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods, 9(2), 137.
Ahangari, M., Ramezan, Y., & Khani, M. R. (2021). Effect of low pressure cold plasma treatment on microbial decontamination and physicochemical properties of dried walnut kernels (Juglans regia L.). Journal of Food Process Engineering, 44(1), e13593.
Amini, M., & Ghoranneviss, M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. Lwt, 73, 178-184.
Aoyama, K., Nakajima, M., Tabata, S., Ishikuro, E., Tanaka, T., Norizuki, H., Itoh, Y., Fujita, K., Kai, S., & Tsutsumi, T. (2010). Four-year surveillance for ochratoxin A and fumonisins in retail foods in Japan. Journal of food protection, 73(2), 344-352.
Arcega, R. D., Hou, C.-Y., Hsu, S.-C., Lin, C.-M., Chang, W.-H., & Chen, H.-L. (2022). Reduction of pesticide residues in Chrysanthemum morifolium by nonthermal plasma-activated water and impact on its quality. Journal of Hazardous Materials, 434, 128610.
Aswani, Y., Renuka, R., Bodaiah, B., Mangamu, U., Vijaya, L., & Poda, S. (2016). Mycotoxin strategies: Impact on global health and wealth. Pharm. Anal. Acta, 7, 498.
Ballis, A. (2019). Coffee a worldwide trend with health benefits. Acta Scientific Nutritional Health, 3(3), 70-73.
Benites, A. J., Fernandes, M., Boleto, A. R., Azevedo, S., Silva, S., & Leitão, A. L. (2017). Occurrence of ochratoxin A in roasted coffee samples commercialized in Portugal. Food Control, 73, 1223-1228.
Bicho, N. C., Leitão, A. E., Ramalho, J. C., & Lidon, F. C. (2012). Use of colour parameters for roasted coffee assessment. Food Science and Technology, 32, 436-442.
Bigi, F., Maurizzi, E., Quartieri, A., De Leo, R., Gullo, M., & Pulvirenti, A. (2023). Non-thermal techniques and the “hurdle” approach: How is food technology evolving? Trends in Food Science & Technology, 132, 11-39. https://doi.org/10.1016/j.tifs.2022.12.015
Blanc, M., Pittet, A., Muñoz-Box, R., & Viani, R. (1998). Behavior of ochratoxin A during green coffee roasting and soluble coffee manufacture. Journal of Agricultural and Food Chemistry, 46(2), 673-675.
Bobkova, A., Hudacek, M., Jakabova, S., Belej, L., Capcarova, M., Curlej, J., Bobko, M., Arvay, J., Jakab, I., Capla, J., & Demianova, A. (2020). The effect of roasting on the total polyphenols and antioxidant activity of coffee. J Environ Sci Health B, 55(5), 495-500. https://doi.org/10.1080/03601234.2020.1724660
Burdan, F. (2015). Caffeine in coffee. In Coffee in health and disease prevention (pp. 201-207). Elsevier.
Caporaso, N., Whitworth, M. B., Cui, C., & Fisk, I. D. (2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Research International, 108, 628-640.
Casas-Junco, P. P., Ragazzo-Sánchez, J. A., Solís-Pacheco, J. R., Aguilar-Uscanga, B. R., Sáyago-Ayerdi, S. G., & Calderón-Santoyo, M. (2021). Physicochemical, aromatic, sensory properties and antioxidant activity of roasted coffee (Coffea arabica L.) treated with cold plasma technology. Biotecnia, 23(2), 120-126.
Casas-Junco, P. P., Solis-Pacheco, J. R., Ragazzo-Sanchez, J. A., Aguilar-Uscanga, B. R., Bautista-Rosales, P. U., & Calderon-Santoyo, M. (2019). Cold Plasma Treatment as an Alternative for Ochratoxin a Detoxification and Inhibition of Mycotoxigenic Fungi in Roasted Coffee. Toxins (Basel), 11(6). https://doi.org/10.3390/toxins11060337
Castellanos-Onorio, O., Gonzalez-Rios, O., Guyot, B., Fontana, T. A., Guiraud, J. P., Schorr-Galindo, S., Durand, N., & Suárez-Quiroz, M. (2011). Effect of two different roasting techniques on the Ochratoxin A (OTA) reduction in coffee beans (Coffea arabica). Food Control, 22(8), 1184-1188. https://doi.org/10.1016/j.foodcont.2011.01.014
Chang, C. (2021). Opportunities for US coffee percolate in Taiwan Brewing Market (Coffee, Beverages, Issue. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Opportunities%20for%20US%20Coffee%20Percolate%20in%20Taiwan%20Brewing%20Market_Taipei%20ATO_Taiwan_04-27-2021
Cho, A. R., Park, K. W., Kim, K. M., Kim, S. Y., & Han, J. (2014). Influence of Roasting Conditions on the Antioxidant Characteristics of C olombian Coffee (C offea arabica L.) Beans. Journal of food biochemistry, 38(3), 271-280.
de Melo Pereira, G. V., de Carvalho Neto, D. P., Magalhaes Junior, A. I., do Prado, F. G., Pagnoncelli, M. G. B., Karp, S. G., & Soccol, C. R. (2020). Chemical composition and health properties of coffee and coffee by-products. Adv Food Nutr Res, 91, 65-96. https://doi.org/10.1016/bs.afnr.2019.10.002
Ding, L., Han, M., Wang, X., & Guo, Y. (2023). Ochratoxin A: Overview of Prevention, Removal, and Detoxification Methods. Toxins, 15(9), 565.
Domonkos, M., Tichá, P., Trejbal, J., & Demo, P. (2021). Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Applied Sciences, 11(11). https://doi.org/10.3390/app11114809
Dufay, M., Jimenez, M., & Degoutin, S. (2020). Effect of cold plasma treatment on electrospun nanofibers properties: A review. ACS Applied Bio Materials, 3(8), 4696-4716.
Farah, A. (2012). Coffee constituents. Coffee: Emerging health effects and disease prevention, 1, 22-58.
Feizollahi, E., Arshad, M., Yadav, B., Ullah, A., & Roopesh, M. S. (2020). Degradation of Deoxynivalenol by Atmospheric-Pressure Cold Plasma and Sequential Treatments with Heat and UV Light. Food Engineering Reviews, 13(3), 696-705. https://doi.org/10.1007/s12393-020-09241-0
Feizollahi, E., Iqdiam, B., Vasanthan, T., Thilakarathna, M. S., & Roopesh, M. S. (2020). Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains. Applied Sciences, 10(10). https://doi.org/10.3390/app10103530
Feizollahi, E., Jeganathan, B., Reiz, B., Vasanthan, T., & Roopesh, M. S. (2023). Reduction of deoxynivalenol during barley steeping in malting using plasma activated water and the determination of major degradation products. Journal of Food Engineering, 352. https://doi.org/10.1016/j.jfoodeng.2023.111525
Ferraz, M. B. M., Farah, A., Iamanaka, B. T., Perrone, D., Copetti, M. V., Marques, V. X., Vitali, A. A., & Taniwaki, M. H. (2010). Kinetics of ochratoxin A destruction during coffee roasting. Food Control, 21(6), 872-877. https://doi.org/10.1016/j.foodcont.2009.12.001
García-Moraleja, A., Font, G., Mañes, J., & Ferrer, E. (2015). Simultaneous determination of mycotoxin in commercial coffee. Food Control, 57, 282-292.
Gavahian, M., & Cullen, P. J. (2019). Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. Food Reviews International, 36(2), 193-214. https://doi.org/10.1080/87559129.2019.1630638
Gebeyehu, B. T., & Bikila, S. L. (2015). Determination of caffeine content and antioxidant activity of coffee. Am J Appl Chem, 3(2), 69-76.
Geremew, T., Abate, D., Landschoot, S., Haesaert, G., & Audenaert, K. (2016). Occurrence of toxigenic fungi and ochratoxin A in Ethiopian coffee for local consumption. Food Control, 69, 65-73.
Haile, M., Bae, H. M., & Kang, W. H. (2020). Comparison of the Antioxidant Activities and Volatile Compounds of Coffee Beans Obtained Using Digestive Bio-Processing (Elephant Dung Coffee) and Commonly Known Processing Methods. Antioxidants (Basel), 9(5). https://doi.org/10.3390/antiox9050408
Hečimović, I., Belščak-Cvitanović, A., Horžić, D., & Komes, D. (2011). Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food chemistry, 129(3), 991-1000.
Hemmati, V., Garavand, F., Khorshidian, N., Cacciotti, I., Goudarzi, M., Chaichi, M., & Tiwari, B. K. (2021). Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder. Food Bioscience, 44. https://doi.org/10.1016/j.fbio.2021.101348
Herianto, S., Arcega, R. D., Hou, C. Y., Chao, H. R., Lee, C. C., Lin, C. M., Mahmudiono, T., & Chen, H. L. (2023). Chemical decontamination of foods using non-thermal plasma-activated water. Sci Total Environ, 874, 162235. https://doi.org/10.1016/j.scitotenv.2023.162235
Herianto, S., Hou, C. Y., Lin, C. M., & Chen, H. L. (2021). Nonthermal plasma-activated water: A comprehensive review of this new tool for enhanced food safety and quality. Compr Rev Food Sci Food Saf, 20(1), 583-626. https://doi.org/10.1111/1541-4337.12667
Hojnik, N., Cvelbar, U., Tavcar-Kalcher, G., Walsh, J. L., & Krizaj, I. (2017). Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus "Classic" Decontamination. Toxins (Basel), 9(5). https://doi.org/10.3390/toxins9050151
Holscher, W., & Steinhart, H. (1995). Aroma compounds in green coffee. In Developments in food science (Vol. 37, pp. 785-803). Elsevier.
Imperato, R., Campone, L., Piccinelli, A. L., Veneziano, A., & Rastrelli, L. (2011). Survey of aflatoxins and ochratoxin a contamination in food products imported in Italy. Food Control, 22(12), 1905-1910.
Iqbal, S. Z. (2021). Mycotoxins in food, recent development in food analysis and future challenges; a review. Current Opinion in Food Science, 42, 237-247. https://doi.org/10.1016/j.cofs.2021.07.003
Iqdiam, B. M., Feizollahi, E., Arif, M. F., Jeganathan, B., Vasanthan, T., Thilakarathna, M. S., & Roopesh, M. (2021). Reduction of T‐2 and HT‐2 mycotoxins by atmospheric cold plasma and its impact on quality changes and germination of wheat grains. Journal of Food Science, 86(4), 1354-1371.
Jalili, M., Jinap, S., & Noranizan, M. A. (2012). Aflatoxins and ochratoxin a reduction in black and white pepper by gamma radiation. Radiation Physics and Chemistry, 81(11), 1786-1788. https://doi.org/10.1016/j.radphyschem.2012.06.001
Keshavarzi, M., Najafi, G., Ahmadi Gavlighi, H., Seyfi, P., & Ghomi, H. (2020). Enhancement of polyphenolic content extraction rate with maximal antioxidant activity from green tea leaves by cold plasma. Journal of Food Science, 85(10), 3415-3422.
Kim, S. J., Lee, S., Bang, E., Lee, S., Rhee, J. K., & Na, Y. C. (2019). Comparative evaluation of flavor compounds in fermented green and roasted coffee beans by solid phase microextraction‐gas chromatography/mass spectrometry. Flavour and Fragrance Journal, 34(5), 365-376. https://doi.org/10.1002/ffj.3517
Komes, D., & Bušić, A. (2014). Antioxidants in coffee. In Processing and impact on antioxidants in beverages (pp. 25-32). Elsevier.
Kriz, P., Petr, B., Zbynek, H., Jaromír, K., Pavel, O., Petr, S., & Miroslav, D. (2015). Influence of plasma treatment in open air on mycotoxin content and grain nutriments. Plasma Medicine, 5(2-4).
Król, K., Gantner, M., Tatarak, A., & Hallmann, E. (2020). The content of polyphenols in coffee beans as roasting, origin and storage effect. European Food Research and Technology, 246, 33-39.
Kungsuwan, K., Sawangrat, C., Ounjaijean, S., Chaipoot, S., Phongphisutthinant, R., & Wiriyacharee, P. (2023). Enhancing Bioactivity and Conjugation in Green Coffee Bean (Coffea arabica) Extract through Cold Plasma Treatment: Insights into Antioxidant Activity and Phenolic–Protein Conjugates. Molecules, 28(20), 7066.
Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B., & Carciofi, B. A. M. (2022). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312, 110748.
Lee, T., Park, H., Puligundla, P., Koh, G.-H., Yoon, J., & Mok, C. (2020). Degradation of benzopyrene and acrylamide in roasted coffee beans by corona discharge plasma jet (CDPJ) and its effects on biochemical and sensory properties. Food Chemistry, 328, 127117.
Leitão, A. L. (2019). Occurrence of Ochratoxin A in Coffee: Threads and Solutions—A Mini-Review. Beverages, 5(2). https://doi.org/10.3390/beverages5020036
Leoni, L. A., Valente Soares, L. M., & Oliveira IV, P. L. (2000). Ochratoxin A in Brazilian roasted and instant coffees. Food Additives & Contaminants, 17(10), 867-870.
Lerda, D., Pelliccioni, P., Biagi, M., Scalone, G., Vallejos, R., Stout, M., Mezzano, J., Flanagan, C., & Litterio, N. (2013). Roasting coffee beans (Coffea arabica) artificially contaminated with ochratoxin A strongly reduces the analytical ochratoxin A content but not the genotoxic effects. Toxicology, 9.
Li, X., Ma, W., Ma, Z., Zhang, Q., & Li, H. (2021). The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules, 26(22). https://doi.org/10.3390/molecules26226928
Liao, X., Zhang, Y., Zhao, X., & Ding, T. (2022). Cold Plasma Hurdled Strategies for Food Safety Applications. Applications of Cold Plasma in Food Safety, 325-340.
Liu, W. C., Pushparaj, K., Meyyazhagan, A., Arumugam, V. A., Pappuswamy, M., Bhotla, H. K., Baskaran, R., Issara, U., Balasubramanian, B., & Mousavi Khaneghah, A. (2022). Ochratoxin A as an alarming health threat for livestock and human: A review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis. Toxicon, 213, 59-75. https://doi.org/10.1016/j.toxicon.2022.04.012
López-Galilea, I., De Pena, M. P., & Cid, C. (2007). Correlation of selected constituents with the total antioxidant capacity of coffee beverages: influence of the brewing procedure. Journal of Agricultural and Food Chemistry, 55(15), 6110-6117.
Lu, L., Tibpromma, S., Karunarathna, S. C., Jayawardena, R. S., Lumyong, S., Xu, J., & Hyde, K. D. (2022). Comprehensive Review of Fungi on Coffee. Pathogens, 11(4). https://doi.org/10.3390/pathogens11040411
Luo, S., Du, H., Kebede, H., Liu, Y., & Xing, F. (2021). Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control, 127. https://doi.org/10.1016/j.foodcont.2021.108120
Makari, M., Hojjati, M., Shahbazi, S., & Askari, H. (2021). Elimination of Aspergillus flavus from pistachio nuts with dielectric barrier discharge (DBD) cold plasma and its impacts on biochemical indices. Journal of Food Quality, 2021, 1-12.
Marc, R. A. (2022). Implications of Mycotoxins in Food Safety. In Mycotoxins and Food Safety-Recent Advances. IntechOpen.
Marrez, D. A., & Ayesh, A. M. (2021). Mycotoxins: The threat to food safety. Egyptian Journal of Chemistry, 0(0), 0-0. https://doi.org/10.21608/ejchem.2021.80490.3987
Mehta, D., & Yadav, S. K. (2020). Impact of atmospheric non-thermal plasma and hydrothermal treatment on bioactive compounds and microbial inactivation of strawberry juice: A hurdle technology approach. Food Science and Technology International, 26(1), 3-10.
Melliyanti, S. N., Afandi, F. A., Giriwono, P. E., & Herawati, D. (2023). A meta analysis: the effects of types, roasting degrees and origins on antioxidant properties of coffee. International Journal of Food Science & Technology, 58(6), 2857-2865. https://doi.org/10.1111/ijfs.16431
Micco, C., Grossi, M., Miraglia, M., & Brera, C. (1989). A study of the contamination by ochratoxin A of green and roasted coffee beans.
Misra, N. N., Yadav, B., Roopesh, M. S., & Jo, C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr Rev Food Sci Food Saf, 18(1), 106-120. https://doi.org/10.1111/1541-4337.12398
Mwabulili, F., Xie, Y., Li, Q., Sun, S., Yang, Y., & Ma, W. (2023). Research progress of ochratoxin a bio-detoxification. Toxicon, 222, 107005. https://doi.org/10.1016/j.toxicon.2022.107005
Odžaković, B., Džinić, N., Kukrić, Z., & Grujić, S. (2016). Effect of roasting degree on the antioxidant activity of different Arabica coffee quality classes. Acta Scientiarum Polonorum Technologia Alimentaria, 15(4), 409-417.
Oliveira, G., da Silva, D. M., Alvarenga Pereira, R. G. F., Paiva, L. C., Prado, G., & Batista, L. R. (2013). Effect of different roasting levels and particle sizes on ochratoxin A concentration in coffee beans. Food Control, 34(2), 651-656. https://doi.org/10.1016/j.foodcont.2013.06.014
Omotayo, O. P., Omotayo, A. O., Mwanza, M., & Babalola, O. O. (2019). Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol Res, 35(1), 1-7. https://doi.org/10.5487/TR.2019.35.1.001
Ouakhssase, A., Fatini, N., & Ait Addi, E. (2021). A facile extraction method followed by UPLC-MS/MS for the analysis of aflatoxins and ochratoxin A in raw coffee beans. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 38(9), 1551-1560. https://doi.org/10.1080/19440049.2021.1925165
Ouf, S. A., Basher, A. H., & Mohamed, A. A. H. (2015). Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. Journal of the Science of Food and Agriculture, 95(15), 3204-3210.
Pakshir, K., Dehghani, A., Nouraei, H., Zareshahrabadi, Z., & Zomorodian, K. (2021). Evaluation of fungal contamination and ochratoxin A detection in different types of coffee by HPLC-based method. J Clin Lab Anal, 35(11), e24001. https://doi.org/10.1002/jcla.24001
Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1), 4.
Parliment, T. H. (2000). An Overview of Coffee Roasting. In Caffeinated Beverages (pp. 188-201). https://doi.org/10.1021/bk-2000-0754.ch020
Paterson, R. R. M. (2023). Special Issue: Coffee, Fungi, Mycotoxins, and Climate Change. Microorganisms, 11(4). https://doi.org/10.3390/microorganisms11040941
Peng, C., Ding, Y., An, F., Wang, L., Li, S., Nie, Y., Zhou, L., Li, Y., Wang, C., & Li, S. (2015). Degradation of ochratoxin A in aqueous solutions by electron beam irradiation. Journal of Radioanalytical and Nuclear Chemistry, 306, 39-46.
Pleadin, J., Frece, J., & Markov, K. (2019). Mycotoxins in food and feed. Advances in food and nutrition research, 89, 297-345.
Pogorzelska-Nowicka, E., Hanula, M. M., Brodowska-Trębacz, M., Górska-Horczyczak, E., Jankiewicz, U., Mazur, T., Marcinkowska-Lesiak, M., Półtorak, A., & Wierzbicka, A. (2021). The effect of cold plasma pretreatment on water-suspended herbs measured in the content of bioactive compounds, antioxidant activity, volatile compounds and microbial count of final extracts. Antioxidants, 10(11), 1740.
Pokhrel, P., Shrestha, S., Rijal, S. K., & Rai, K. P. (2016). A simple HPLC Method for the Determination of Caffeine Content in Tea and Coffee. Journal of Food Science and Technology Nepal, 9, 74-78.
Ramalakshmi, K., & Raghavan, B. (1999). Caffeine in coffee: its removal. Why and how? Crit Rev Food Sci Nutr, 39(5), 441-456. https://doi.org/10.1080/10408699991279231
Ren, C., Xiao, J., Wang, S., Jiang, W., Zhang, Y., & Liu, Z. (2017). Effect of peanut components on the degradation of aflatoxin B_1 treated by atmospheric pressure plasma. Sci. Technol. Cereal. Oils Foods, 2(7).
Rodriguez, Y. F., Guzman, N. G., & Hernandez, J. G. (2020). Effect of the postharvest processing method on the biochemical composition and sensory analysis of arabica coffee. Engenharia Agrícola, 40, 177-183.
Rostagno, M. A., Celeghini, R. M., Debien, I. C., Nogueira, G. C., & Meireles, M. A. A. (2015). Phenolic compounds in coffee compared to other beverages. In Coffee in health and disease prevention (pp. 137-142). Elsevier.
Ryu, D., Bianchini, A., & Bullerman, L. B. (2008). Effects of processing on mycotoxins. Stewart Postharvest Rev, 4(6), 1-7.
Saeed Alkaltham, M., Musa Özcan, M., Uslu, N., Salamatullah, A. M., & Hayat, K. (2020). Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans. Journal of Food Processing and Preservation, 44(11). https://doi.org/10.1111/jfpp.14874
Sarangapani, C., O'Toole, G., Cullen, P., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies, 44, 235-241.
Shi, H., Ileleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology, 10, 1042-1052.
Somporn, C., Kamtuo, A., Theerakulpisut, P., & Siriamornpun, S. (2011). Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor). International Journal of Food Science & Technology, 46(11), 2287-2296.
Song, J. L., Asare, T. S., Kang, M. Y., & Lee, S. C. (2018). Changes in bioactive compounds and antioxidant capacity of coffee under different roasting conditions. Korean Journal of Plant Resources, 31(6), 704-713.
Spadaro, D., Garibaldi, A., Prelle, A., Vallauri, D., Siciliano, I., Cavallero, M., & Gullino, M. L. (2015). Efficacy of cold plasma in the reduction of aflatoxins on hazelnuts. Journal of plant pathology, 97.
Spiller, M. A. (2019). The chemical components of coffee. Caffeine, 97-161.
Srdjenovic, B., Djordjevic-Milic, V., Grujic, N., Injac, R., & Lepojevic, Z. (2008). Simultaneous HPLC determination of caffeine, theobromine, and theophylline in food, drinks, and herbal products. Journal of chromatographic science, 46(2), 144-149.
Sruthi, N., Josna, K., Pandiselvam, R., Kothakota, A., Gavahian, M., & Khaneghah, A. M. (2022). Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food chemistry, 368, 130809.
Tappi, S., Ramazzina, I., Rizzi, F., Sacchetti, G., Ragni, L., & Rocculi, P. (2018). Effect of plasma exposure time on the polyphenolic profile and antioxidant activity of fresh-cut apples. Applied Sciences, 8(10), 1939.
Tarigan, E., Wardiana, E., Hilmi, Y., & Komarudin, N. (2022). The changes in chemical properties of coffee during roasting: A review. IOP Conference Series: Earth and Environmental Science,
Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., & Valdramidis, V. P. (2018). Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends in Food Science & Technology, 77, 21-31. https://doi.org/10.1016/j.tifs.2018.05.007
Tsai, C.-F., & Jioe, I. P. J. (2021). The analysis of chlorogenic acid and caffeine content and its correlation with coffee bean color under different roasting degree and sources of coffee (Coffea arabica typica). Processes, 9(11), 2040.
Tsegay, G., Redi-Abshiro, M., Chandravanshi, B. S., Ele, E., Mohammed, A. M., & Mamo, H. (2019). Volatile profile of green coffee beans from Coffea arabica L. plants grown at different altitudes in Ethiopia. Bulletin of the Chemical Society of Ethiopia, 33(3), 401-413.
Tsubouchi, H., Yamamoto, K., Hisada, K., Sakabe, Y., & Udagawa, S.-i. (1987). Effect of roasting on ochratoxin A level in green coffee beans inoculated with Aspergillus ochraceus. Mycopathologia, 97, 111-115.
Vanesa, D., & Ana, P. (2013). Occurrence of Ochratoxin A in coffee beans, ground roasted coffee and soluble coffee and method validation. Food Control, 30(2), 675-678.
Vieira, T., Cunha, S., & Casal, S. (2015). Mycotoxins in Coffee. In Coffee in Health and Disease Prevention (pp. 225-233). https://doi.org/10.1016/b978-0-12-409517-5.00025-5
Wang, J., & Wu, Z. (2022). Combined use of ultrasound-assisted washing with in-package atmospheric cold plasma processing as a novel non-thermal hurdle technology for ready-to-eat blueberry disinfection. Ultrason Sonochem, 84, 105960. https://doi.org/10.1016/j.ultsonch.2022.105960
Wang, L., Hua, X., Shi, J., Jing, N., Ji, T., Lv, B., Liu, L., & Chen, Y. (2022). Ochratoxin A: Occurrence and recent advances in detoxification. Toxicon, 210, 11-18. https://doi.org/10.1016/j.toxicon.2022.02.010
Wang, X., & Lim, L.-T. (2015). Physicochemical characteristics of roasted coffee. In Coffee in health and disease prevention (pp. 247-254). Elsevier.
Wang, X., Wang, S., Yan, Y., Wang, W., Zhang, L., & Zong, W. (2020). The degradation of Alternaria mycotoxins by dielectric barrier discharge cold plasma. Food Control, 117, 107333.
Wang, X., Wang, Y., Hu, G., Hong, D., Guo, T., Li, J., Li, Z., & Qiu, M. (2022). Review on factors affecting coffee volatiles: From seed to cup. Journal of the Science of Food and Agriculture, 102(4), 1341-1352.
Wei, F., & Tanokura, M. (2015). Chemical changes in the components of coffee beans during roasting. In Coffee in health and disease prevention (pp. 83-91). Elsevier.
Wu, H., Gu, J., Bk, A., Nawaz, M. A., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2022). Effect of processing on bioaccessibility and bioavailability of bioactive compounds in coffee beans. Food Bioscience, 46. https://doi.org/10.1016/j.fbio.2021.101373
Wu, H., Lu, P., Liu, Z., Sharifi‐Rad, J., & Suleria, H. A. (2022). Impact of roasting on the phenolic and volatile compounds in coffee beans. Food Science & Nutrition, 10(7), 2408-2425.
Wu, Y., Cheng, J.-H., & Sun, D.-W. (2021). Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends in Food Science & Technology, 109, 647-661.
Xu, H., Fang, C., & Huang, Q. (2023). Achieving improved efficiency for removal of aflatoxin B1 by combination use of cold atmospheric-pressure plasma and plasma-activated water. Journal of Water Process Engineering, 54. https://doi.org/10.1016/j.jwpe.2023.104004
Xu, H., Liu, D., Wang, W., Liu, Z., Guo, L., Rong, M., & Kong, M. G. (2018). Investigation on the RONS and bactericidal effects induced by He+ O2 cold plasma jets: In open air and in an airtight chamber. Physics of Plasmas, 25(11).
Yousefi, M., Mohammadi, M. A., Khajavi, M. Z., Ehsani, A., & Scholtz, V. (2021). Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins. J Fungi (Basel), 7(5). https://doi.org/10.3390/jof7050395
Zeraatpisheh, F., Mosallaie, F., Sanaei, F., Falah, F., Vasiee, A., & Yazdi, F. T. (2023). The simultaneous influence of ultraviolet rays and cold plasma on the physicochemical attributes and shelf life of dried pistachios during the storage period. Journal of Food Process Engineering, 46(9), e14403.
Zhao, Y. M., Patange, A., Sun, D. W., & Tiwari, B. (2020). Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr Rev Food Sci Food Saf, 19(6), 3951-3979. https://doi.org/10.1111/1541-4337.12644
校內:2029-02-02公開