簡易檢索 / 詳目顯示

研究生: 鐘怡捷
Chung, Yi-Chieh
論文名稱: 利用干涉式微影技術製作週期性金屬陣列及應用於折射率感測器量測
Fabrication of periodic metal structure by interference lithography and its application on refractive index sensor
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 干涉式微影一維及二維週期性金屬結構折射率感測
外文關鍵詞: Interference lithography, one- and two-dimensional periodic metal structure, refractive index sensor
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 週期性金屬結構因具有特殊光學性質,而有許多用途,因此一直是熱門的研究領域,其製作也有多種方式,這裡我們希望利用簡單、便宜又快速的方式來製作週期性金屬結構,並將其應用於表面電漿折射率感測器的量測上。
    文中我們使用的製作方式為,先利用便宜、架構簡單且可調性高的Lloyd’s mirror 干涉儀架構,曝光光源為325 nm的氦鎘雷射,進行一維及二維的曝光,再使用熱蒸鍍機沈積金屬及舉離製程,製做出一維及二維金屬結構。其製程分別使用AZ-5214的正型光阻及SU-8負型光阻。AZ-5214製程包含於玻璃基板進行正向與背向曝光,在背向曝光上能製作出週期650 nm,線寬450 nm,高度為80 nm的金屬線,AZ-5214於矽基板分別使用犧牲層及未使用犧牲層之製程。而SU-8因其為環氧樹脂光阻,在曝光後不易去除,因此需增加一犧牲層,這裡分別使用了Omni coat及PVA做為犧牲層,並透蝕刻、沈積金屬及舉離來製作出一維及二維金屬週期性結構。在使用PVA為犧牲層的製程上,我們可製作出週期500 nm,點陣列為250 nm-350 nm,厚度為30 nm-50 nm的結構。
    我們將所製作的橢圓銀點陣列結構,應用於環境折射率感測上,並使用相位檢測法來提升折射率感測上的FOM。在週期為500 nm,厚度為30 nm的銀橢圓點陣列上,使用相位量測法相較於強度量測法可提升FOM值約3.76倍。

    關鍵字:干涉式微影、一維及二維週期性金屬結構、折射率感測。

    Recently, there has been interest in the fabrication of nanoscale periodic structures. Because these structures have many applications. In this work, we report on the fabrication of one- and two-dimensional periodic metallic structures by the Lloyd’s mirror interference lithography. The patterns is written in the photoresist AZ-5214 or SU-8 using a He-Cd laser of wavelength 325nm. Then we deposit the metal by electron beam evaporator and use the lift-off process. We successfully fabricate one- and two-dimensional periodic metallic structure with periodic of 500 nm-700 nm and metal thickness of 30nm-80nm. And we fabricate the Ag ellipse nanostructures on application of refractive index sensor. Phase sensitive measurement can boost figure-of-merit than intensity sensitive measurement. In this work, we can boost 3.76 order.

    Key words: Interference lithography, one- and two-dimensional periodic metal structure, refractive index sensor.

    摘要 I 誌謝 VIII 目錄 IX 圖目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 研究動機與論文架構 2 第2章 紫外光干涉微影技術 4 文獻回顧 4 2.1 干涉理論 8 2.2 干涉系統架構 15 2.3 實驗流程 20 第3章 週期性金屬結構製作 24 3.1 文獻回顧 24 3.2 AZ-5214曝光 25 3.2.1 玻璃基板 29 3.2.1.1正向曝光 33 3.2.1.2背向曝光 35 3.2.2 矽基板 41 3.2.2.1無犧牲層 41 3.2.2.2 PMGI犧牲層 46 3.3 SU-8曝光 50 3.3.1 Omni coat犧牲層 52 3.3.2 PVA犧牲層 60 3.4結果與討論 72 第4章 橢圓AG點陣列製作與光學量測 76 4.1 文獻回顧 76 4.2 製作 79 4.3 光學量測 85 第5章 結論 96 5.1 實驗總結 96 5.2 未來展望 98 參考文獻 99

    1. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, "Three-dimensional control of light in a two-dimensional photonic crystal slab," Nature 407, 983-986 (2000).
    2. N. Vasilantonakis, K. Terzaki, I. Sakellari, V. Purlys, D. Gray, C. M. Soukoulis, M. Vamvakaki, M. Kafesaki, and M. Farsari, "Three-Dimensional Metallic Photonic Crystals with Optical Bandgaps," Advanced Materials 24, 1101-1105 (2012).
    3. H.-Y. Wu, C. J. Choi, and B. T. Cunningham, "Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array," Small 8, 2878-2885 (2012).
    4. X. Liu, X. Deng, P. Sciortino, Jr., M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O'Brien, and J. J. Wang, "Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids," Nano Letters 6, 2723-2727 (2006).
    5. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters," Physical Review Letters 107 (2011).
    6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 376-U332 (2008).
    7. J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chemical Reviews 108, 462-493 (2008).
    8. C. Lu, and R. H. Lipson, "Interference lithography: a powerful tool for fabricating periodic structures," Laser & Photonics Reviews 4, 568-580 (2010).
    9. J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography," Polymers for Advanced Technologies 17, 83-93 (2006).
    10. H. I. Smith, "Low cost nanolithography with nanoaccuracy," Physica E 11, 104-109 (2001).
    11. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Advanced Functional Materials 17, 3027-3041 (2007).
    12. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, "Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist," Journal of Vacuum Science & Technology B 17, 3182-3185 (1999).
    13. T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," Journal of Vacuum Science & Technology B 14, 4167-4170 (1996).
    14. E. J. Saccocio, "APPLICATION OF LLOYDS MIRROR TO X-RAY HOLOGRAPHY," Journal of the Optical Society of America 57, 966 (1967).
    15. H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Applied Physics Letters 75, 2328-2330 (1999).
    16. I. Bita, T. Choi, M. E. Walsh, H. L. Smith, and E. L. Thomas, "Large-area 3D nanostructures with octagonal quasicrystalline symmetry via phase-mask lithography," Advanced Materials 19, 1403-1407 (2007).
    17. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007).
    18. N. G. Johannes de Boor, Ulrich Gösele, and Volker Schmidt, "Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning," OPTICS LETTERS 34, 1783-1785 (2009).
    19. D. S. K. Johannes de Boor, and Volker Schmidt, "Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd’s interferometer," OPTICS LETTERS 35, 3450-3452 (2010).
    20. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," Journal of Alloys and Compounds 449, 261-264 (2008).
    21. I. Byun, and J. Kim, "Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser," Journal of Micromechanics and Microengineering 20, 055024 (2010).
    22. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, "Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques," Optics Express 13, 5331-5337 (2005).
    23. P. N. Dyachenko, S. V. Karpeev, E. V. Fesik, Y. V. Miklyaev, V. S. Pavelyev, and G. D. Malchikov, "The three-dimensional photonic crystals coated by gold nanoparticles," Optics Communications 284, 885-888 (2011).
    24. "SU-82000DataSheet2000_5thru2015Ver4," http://microchem.com/Prod-SU82000.htm.
    25. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, "Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance," Optics Express 16, 10701-10709 (2008).
    26. H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Applied Physics B-Lasers and Optics 81, 271-275 (2005).
    27. S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Applied Physics Letters 83, 380-382 (2003).
    28. J. H. Lee, C. H. Kim, Y. S. Kim, K. M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moire fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Applied Physics Letters 86 (2005).
    29. Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, "Fabrication and characterization of three-dimensional silver-coated polymeric microstructures," Advanced Functional Materials 16, 1739-1744 (2006).
    30. W.-K. Han, G.-H. Hwang, S.-J. Hong, C.-S. Yoon, J.-S. Park, J.-K. Cho, and S.-G. Kang, "Fabrication and characterization of a Cu seed layer on a 60-nm trench-patterned SiO2 substrate by a self-assembled-monolayer (SAM) process," Applied Surface Science 255, 6082-6086 (2009).
    31. "OMNICOAT," http://184.168.52.107/Prod-Ancillaries.htm.
    32. A. del Campo, and C. Greiner, "SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography," Journal of Micromechanics and Microengineering 17, R81-R95 (2007).
    33. "SU-8-table-of-properties." http://microchem.com/Prod-SU82000.htm.
    34. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396-402 (1902).
    35. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America 31, 213-222 (1941).
    36. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    37. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Boosting the Figure-Of-Merit of LSPR-Based Refractive Index Sensing by Phase-Sensitive Measurements," Nano Letters 12, 1655-1659 (2012).
    38. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, "Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability," Nano Letters 10, 4222-4227 (2010).

    無法下載圖示 校內:2019-09-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE