簡易檢索 / 詳目顯示

研究生: 金承漢
Jin, Cheng-Han
論文名稱: 以高溫熱熔法處理廢鹼性電池之研究
Vitrification of Waste Alkaline Batteries
指導教授: 李文智
Lee, Wen-Jhy
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 156
中文關鍵詞: 熱熔融重金屬鹼性電池鹽基度金屬錠熔渣
外文關鍵詞: Ingot, Heavy metals, Vitrification, Slag, Alkaline battery, Basicity
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目標在於以高溫熱熔法處理廢鹼性電池,回收其中可利用之重金屬包括鐵、錳和鋅,並達到廢鹼性電池固化/安定化的效果。為了提升熱熔融效果,本研究混合白雲石、石灰石及碎玻璃作為電池熱熔處理之添加物,將鹽基度(其定義為熱熔融前CaO與SiO2 之質量比,CaO/SiO2)調整在0.610以幫助熱熔融進行。處理過後產物包含金屬錠、熔渣及排放管道廢氣(分為氣相及固相飛灰),其中金屬錠之主要成分為鐵、錳,總共約佔80~90%,因此金屬錠可用作為煉鐵過程中一項進料來源。而熔渣主要成分為鈣、鎂、錳及矽,其中鈣、鎂及矽主要來自於進料之添加物。經由毒性特性溶出試驗(TCLP)之結果顯示熔渣之金屬溶出值均遠低於相關法規標準值。至於排放管道廢氣中固相飛灰之主要成分以鋅及鉀佔多數。O/I值(output-mass / input-mass ratio)顯示鐵、錳大部分進入金屬錠,鋅主要揮發進入排放管道廢氣中,而鈣、鎂及矽則保留在熔渣中。簡而言之,研究結果顯示高溫熱熔法對於廢鹼性電池之固化/安定化處理並同時回收利用鐵、錳、鋅乃一項預期可行之技術。

    The object of this study is to recovery useful metals including Fe, Mn and Zn from waste alkaline batteries and to stabilize those batteries by vitrification. We use the blend of dolomite, limestone and cullet as the additive to enhance the vitrification. The basicity (mass ratio of CaO to SiO2 before vitrification) was adjusted to 0.610 which was favorable for vitrification. The output materials included ingot, slag, and flue gas (gas phase and particulate phase metals). The major composition of ingot was Fe and Mn of which the sum was 80~90% and this product was a good additive for iron making process. In slag, the major constituents were Ca, Mg, Mn, and Si contributed by the additives and toxicity characteristics leaching procedure also reveals its non-toxicity. As for flue gas, the major species were Zn and K which were predominately in particulate phase. The output/input ratio indicated that Fe and Mn mostly moved to ingot, Zn predominately vaporized to flue gas, and Ca, Mg and Si were still retained in slags. Overall speaking, the results shows that the vitrification is a prospective technology to stabilize the waste alkaline batteries and to recovery Fe, Mn and Zn simultaneously.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 前言 1 第二章 文獻回顧 3 2-1 鹼性電池簡介 3 2-2 金屬元素來源與特性 9 2-2-1 鹼性電池中主要金屬元素 9 2-2-2 金屬元素之危害性 13 2-3 高溫熱熔法 15 2-3-1 原理簡介 15 2-3-2 熱熔處理效應及特色 17 2-3-3 玻璃化介紹 26 2-3-3-1 玻璃生成 26 2-3-3-2 玻璃網絡原理 28 2-3-3-3 天然實例 30 2-3-4 熱熔融處理之操作因子 31 2-3-5 熱熔融後熔渣種類及特性 39 2-3-6 熱熔融後熔渣無害化指標 42 2-4 熱熔融處理設備種類 46 第三章 研究設備與方法 57 3-1 研究流程 57 3-2 研究方法與步驟 59 3-2-1 廢鹼性電池來源及熱熔添加物種類 59 3-2-2 高溫熱熔處理操作試驗 61 3-2-3 排放管道中金屬採樣 64 3-2-4 研究分析項目 65 3-2-4-1 金屬總量分析 65 3-2-4-2 熱熔產出物質基本性質分析 68 3-2-4-3 不耐酸鹼度試驗 69 3-2-4-4 毒性特性溶出試驗(TCLP) 69 3-2-4-5 微結構觀察 72 3-2-4-6 X光粉末繞射分析(XRD) 72 3-3 實驗設備 73 3-3-1 主要研究設備 73 3-3-2 實驗分析儀器 78 3-4 品質控制與品質保證 79 3-4-1 檢量線之製定(Calibration Line) 79 3-4-2 檢量線空白校正(Calibration Blank) 81 3-4-3 校正檢查(Calibration Verification) 81 3-4-4 樣品分析 82 3-4-5 偵測極限(ICP version) 85 第四章 結果與討論 87 4-1 高溫熱熔試驗進料物質中金屬元素含量分析 87 4-1-1 廢鹼性電池金屬總量分析 87 4-1-2 添加物金屬總量分析 89 4-1-3 進料各物質金屬元素之貢獻比例 91 4-2 高溫熱熔處理操作產出物質特性分析 93 4-2-1 高溫熱熔試驗產出物質之基本性質分析 93 4-2-1-1 外觀 93 4-2-1-2 質量分布及變化 97 4-2-1-3 體密度 99 4-2-1-4 孔隙率 100 4-2-1-5 吸水率 101 4-2-2 高溫熱熔試驗產出物質之金屬總量分析 102 4-2-2-1 金屬錠之金屬總量分析 102 4-2-2-2 熔渣之金屬總量分析 104 4-2-2-3 排放管道中氣相金屬總量分析 106 4-2-2-4 排放管道中飛灰之金屬總量分析 106 4-2-2-5 熱熔處理之金屬元素移行率(相分配率) 109 4-2-3 熔渣不耐酸鹼度試驗 112 4-2-4 熔渣毒性特性溶出試驗(TCLP) 113 4-2-5 微結構觀察 114 4-2-6 X射線粉末繞射分析(XRD) 116 第五章 結論與建議 119 5-1 結論 119 5-2 建議 121 參考文獻 122 附  錄 131

    Abe, S., Funmiaki, K., Masaharu, O., “Ash melting treatment by rotating type surface melting furnace”, Waste Management, Vol. 16, pp. 431-443, 1996.
    Ahmed, F. The battery-recycling loop: a European perspective. J. Power Sources, Vol. 59, pp. 107-111, 1996.
    Almeida, M.F., Xará S.M., Delgado, J., Costa, C.A., “Characterization of spent AA household alkaline batteries”, Waste Manage., Vol. 26, pp. 466-476, 2006.
    Barbieri, L., Bonamartini, A. C., Lancellotti, I., “Alkaline and alkaline-earth silicate glass and glass-ceramics from municipal and industrial wastes”, Journal of the European Ceramics Society, Vol. 20, pp. 2477-2483, 2000a.
    Barton, R. G., Clark, W. D., Seeker, W. R., “Fate of Metals in Waste Combustion Systems”, Combustion Science and Technology, Vol. 74, pp. 327-342, 1990.
    Bernardes, A.M., Espinosa, D.C.R., Tenório, J.A.S., “Recycling of batteries: a review of current processes and technologies”, Journal of power sources, Vol. 130, pp. 291-298, 2004.
    Chan, C.C.Y., Kirk, D.W., “Behaviour of Metals Under the Conditions of Roasting MSW Incinerator Fly Ash With Chlorinating”, Journal of Hazardous Materials, pp. 64-75, 1999.
    Coleen, M. N., Alvia, G., Gail, A. H., “Development of a laboratory test method for estimating leachate quality from municipal incinerator ash monofills”, International Conference on Municioal Waste Combustion, Vol. 1, pp. 3B: 39-52, 1989.
    Contestabile, M., Panero, S., Scrosati, B., “A laboratory-scale lithium battery recycling process”, Journal of power sources, Vol. 83, pp. 75-78, 1999.
    de Oliveira, D.C., Espinosa, D.C.R., Tenório, J.A.S., “Study of Hg removal and Zn recovery from spent dry batteries”, in: Proceedings of the TMS Annual Meeting 2001, TMS, Warrendale, pp. 167-171, 2001.

    de Souza, C.C.B.M., de Oliveira, D.C., Tenório J.A.S., “Characterization of used alxaline batteries powder and analysis of zinc recovery by acid leaching”, Journal of power sources, Vol. 103, pp. 120-126, 2001.
    DiPietro, J. V., Collins, M. R., Guay, M., Eighmy, T. T., “Evaluation of pH and oxidation – reduction potential on leachability of municipal solid waste incinerator residues”, International conference on municipal waste combustion, Vol. 2, pp. 2B: 21-44, 1989.
    Ecke, E., Sakanakura, H., Matsuto, T., Tanaka, N., Lagerkvist, A., “State–of–the-art-treatment processes for municipal solid waste incineration residues in japan”, Waste Manage Research, Vol. 18, pp. 41-51, 2000.
    Ecke, H., Sakanakuras, H., Matsuto, T., Tanaka, N., Lagerkvist, A., “Effect of Electric arc vitrification of bottom ash on the mobility and fate on metals”, Environmental Science and Technology, Vol. 35, pp. 1531-1536, 2001.
    Endo, H., Nagayoshi, Y., Suzuki, K., “Production of glass ceramics from sewage sludge”, Water Science and Technology, Vol. 36, pp. 235-241, 1997.
    Espinosa, D.C.R., Bernardes, A.M., Tenório, J.A.S., “An overview on the current processes for the recycling of batteries”, J. Power Sources, Vol. 135, pp. 311-319, 2004.
    Fujimoto, T., Tanaka, E., “Melting treatment for incinerated residue of municipal waste”, Proceeding from the Pacific Basin conference on Hazardous Waste. Singapore: Pacific Basin Consortium for Hazardous Waste Research, 1989.
    Gerstle, R. W., Albrinck, D. N., “Atmosphere Emissions of Metals from Sewage Sludge incineration”, JAPCA, Vol. 32, pp. 1113-1123, 1982.
    Hrma, P., Crum, J.V., Bates, D.J., Bredt, P.R., Greenwood, L.R., Smith, H.D., “Vitrification and testing of a Hanford high-level waste sample. Part 1: Glass fabrication, and chemical and radiochemical analysis”, J. Nuclear Mater., Vol. 345, pp. 19-30, 2005.
    Hurd, J.D., Muchnick, D.M., Schedler, M.F., Mele, T., “Recycling of Consumer Dry Cell Batteries”, Noyes Data Corporation, New Jersey, 1993.
    Jones G.O. “Glass”, rev Parke S., Chapman & Hall, London, 1971.
    Kanchanapiyaa, P., Sakanoa, T., Kanaokab, C., Mikunia, T., Ninomiyac, Y., Zhangc, L., Masuid, M., Masamia, F., “Characteristics of slag, fly ash and deposited particles during melting of dewatered sewage sludge in a pilot plant” J. Environ. Manage., Vol. 79, pp. 163-172, 2006.
    Károly, Z., Mohai, I., Tóth, M., Wéber, F., Sźepvölgyi, J., “Production of glass –ceramics from fly ash using arc plasma”, J. Eur. Ceram. Soc., Vol. 27, pp. 1721-1725, 2007.
    Koichiro, K., “Ash Melting System and Reuse of Produce by Arc Processing”, Waste Management, Vol. 16, pp. 423-430, 1996.
    Kuo, Y.M., Lin, T.C., Tsai, P.J., “Immobilization and encapsulation during vitrification of incineration ashes in a coke bed furnace” J. Hazard. Mater., Vol. B133, pp. 75-78, 2006.
    Kuo, Y.M., Lin, T.C., Tsai, P.J., “Metal behavior during vitrification of incinerator ash in a coke bed furnace” J. Hazard. Mater., Vol. B109, pp. 79-84, 2004.
    Kuo, Y.M., Wang, J.W., Chao, H.R., Wang, C.T., Chang-Chien, G.P., “Effect of cooling rate and basicity during vitrification of fly ash. Part 2: On the chemical stability and acid resistance of slags” J. Hazard. Mater., doi: 10.1016/j.jhazmat.2007.07.017in press.
    Li, C. T., Huang, Y. J., Huang, K. L., Lee, W. J., “Characterization of Slags and Ingots from the Vitrification of Municipal Solid Waste Incineration Ashes”, Industry and Engineering Chemistry Research, Vol. 42, pp. 2306-2313, 2003.
    Linden, D., “Handbook of Batteries”, Chapter 10. Alkaline manganese Dioxide Cells, second ed. McGraw-Hill Inc., New York, 1995.
    Luisa, B., Anna, C., Isabella, L., “Alkaline and Alkaline-Earth Silicate Glass and Glass-Ceramics from Municipal and Industrial Wastes”, Journal of European Ceramic Society, Vol. 20, pp. 2477-2483, 2000b.
    Makoto Hattori, Eiji Shoto, “Solidification of heavy metal-containing sludges by heating with silicate, Toxic and hazardous waste disposal”, Ann Arbor Science, Vol. 3, pp. 141-154, 1981.
    Masakatsu Hiraoka, Nobuo Takeda, “Beharior of hazardous Substances in Stabization and Solidification Process of industrial waste”, Toxic and hazardous waste disposal, Vol. 3, pp. 107-124, 1981.
    Masamoto, S., Junichiro, T., Hisashi, G., Masaharu, O., “Recovery of cadmium from small sealed Ni/Cd batteries. in: Proceedings of the TMS Annual Meeting 1993”, TMS, Warrendale, pp. 815-818, 1993.
    Mathews, A. P., “Chemical Equilibrium Analysis of Lead and Berylium Speciation in Hazardous Waste Incinerators Proceedings of the Second International Symposium on Metals Speciation”, Seperation and Recovery, Vol. 2, pp. 63-83, 1989.
    Müller, T., Friedrich, B., “Development of a recycling process for nickel-metal hydride batteries”, J. Power Sources, Vol. 158, pp. 1498-1509, 2006.
    Municipal Incinerators in the Ward area of Tokyo, Japan. Sci. Total Environ., Vol. 168, pp. 225-231, 1995.
    Murakami, T., Ishida, T., Sasabe K., Sasaki, K. and Harada, S., “Characteristics of Melting Process for Sewage Sludge”, Water Science and Technology, Vol. 23, No. 10/12, pp. 2019-2028, 1991a.
    Muzi, A., “Collection of spent batteries in Rome”, J. Power Sources, Vol. 57, pp. 19-21, 1995.
    Nakamura, K., Kinoshita, S., Takatsuki, H., “The origin and behavior of lead, cadmium and antimony in MSW incinerator”, Waste manage., Vol. 16, pp. 509-517, 1996.
    Paasivirta, J., “Chemical Ecotoxicology”, Lewis Publishers, Inc., 1991.
    Rosenfield, I., Ziff, E., Van Loon, B., “DNA for Beginners, Writers and Readers Publishing Co.”, ISBN 0 86316 023 9, 1983.
    Sawell, S. E., Constable, T. W., “The national incinerator testing and evaluation program: Characterization of residues from a modular municipal waste incinerator”, International conference on municipal waste Combustion, Vol. 2, pp. 2B-45-62, 1989.
    Shoto, E., Hattori, M., “Studies on the Stabilization/Solidification of Chromium-Containing Sludge”, Toxic and hazardous waste disposal, Ann Arbor Science, Vol. 3, pp. 125-140, 1981.
    Stegemann, J.A., Coté, P.L., “Summary of an investigation of test methods for solidified waste evaluation”, Waste Management, Vol. 10, pp. 41-52, 1990.
    Tanaka, Y., Wakui, H., Hada, T., Kawakami, M., “Demonstration of a Multi-purpose Incinerating melter System”, ANS International Topical meeting, 1986.
    Tanikawa, N., Imai, T., Tatezono, K., Sugiyama, T., Urano, K., “Effect of mercury reduction of dry batteries on mercury emissions from municipal incinerators in the Ward area of Tokyo, Japan”, Science of the Total Environment, Vol. 168, pp. 225-231, 1995.
    Van der Sloot, H. A., De Groot, G. J., Wijkstra, J., Leenders, P., “Leaching characteristics of incinerator residues and potential for modification of leaching”, Municipal Waste Combustion, pp. 2B: 1-19, 1989.
    Vassilev, S.V., Braekman-Danheux, C., Laurent, Ph., Thiemann, T., Fontana, A., “Behaviour, Capture and Inertization of Some Trace Elements During Combustion of Refuse-Derived Char From Municipal Solid Waste”, Fuel, Vol. 78, No.26, pp. 1131, 1999.
    Vehlow, J., Braun, H., Horch, K., Merz, A., Schneider, J., Stieglitz, L., Vogg, H., “Semi - industrial testing of the 3R-process(Heavy metal extraction, product quailty)”, International conference on municipal waste combustion, Vol. 2, pp. 4B: 11-23, 1989.
    Veloso, L.R. S., Rodrigues, L.E.O.C., Ferreira, D.A., Magalhães, F.S., Mansur, M.B., “Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries”, J. Power Sources, Vol. 152, pp. 295-302, 2005.
    Vogel, W., “Glass Chemistry”, Springer-Verlag, New York, 1992.
    Wey, M. Y., Su, J. L., Yan, M. H., Wei, M. C., “The concentration distribution of heavy metal under different incineration operation conditions”, The Science of the Total Environment 21, pp. 183-193, 1998.
    Wu, C.Y., Biswas, P., “An Equilibrium Analysis to Determine the Speciation of Metals in an Incinerator”, Combustion and Flame, Vol. 93, pp. 31-40, 1993.
    Wunsch, P., Greilinger, C., Bienick, D. Kettrup, A. “Investingation of the Binding of Heavy Metals in Thermally Treated Residues From Waste Incineration”, Chemosphere, Vol. 32, No. 11, pp. 2211, 1996.
    Xue, Z., Hua, Z., Yao, N., and Chen. S., “Separation and recovery of nickel and cadmium from spent Cd-Ni storage batteries and their process wastes” Separation Sci. Technol., Vol. 27, pp. 213-221, 1992.
    Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T.M., Inoue, K., “Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries”, hydrometallurgy, Vol. 47, pp. 259-271, 1998.
    大同特殊鋼株式會社,“都市ごみ燒卻殘渣の電氣熔融處理ツステム”,都市清掃,Vol. 38,No. 147,1985。
    王鯤生、江康鈺、葉宗智、林仕敏,“都市垃圾焚化灰渣重金屬濃度及TCLP溶出之評估”,第十一屆廢棄物處理技術研討會, pp. 68-76,高雄,1996。
    王鯤生,“一般廢棄物焚化灰渣之有害物質特性研究”,行政院環保署委託報告,EPA-85-E3H1-09-02,1996。
    行政院環境保護署,http://www.epa.gov.tw/,2008
    行政院環境保護署,排放管道中重金屬檢測方法,NIEA A302.73C,2006
    行政院環境保護署,乾電池汞、鎘、鉛含量檢測方法,NIEA R315.01B,2002
    行政院環境保護署,污泥及沉積物中重金屬檢測方法-酸消化法,NIEA R353.00C,2002
    行政院環境保護署,事業廢棄物毒性特性溶出程序,NIEA R201.13C,2003
    行政院環境保護署資源回收基管會,http://recycle.epa.gov.tw/,2008。
    行政院環境保護署,“從銀/氧化鋁(Ag/Al2O3)複合材料中分離銀金屬-高溫電漿熔融技術之開發研究”,期末報告,2004。
    池原洋一、鈴木邦雄等,“清掃工場のフライアツシユの抵抗爐による熔融處理技術時について”, 都市清掃,Vol. 39,No. 153,1986。
    江康鈺、王鯤生,“污泥熔融處理及資源再利用技術”,工業污染防治,Vol. 64,pp. 156-188,1997。
    朱瑾、宋威岳、曾錦清、郭永言、余玉正,“石化產業廢料及模擬放射性廢料電漿玻璃處理技術之研究”,中華民國環境工程學會第十四屆廢棄物處理研討會,pp. 1-15,1999。
    村上忠弘、石田貴榮,“水道污泥灰分の熔融特性に關する考察”,下水道協會誌,Vol. 26,No. 296,1989。
    佐佐木邦利,“下水污泥の熔融ツステムの評價に關する第一次報告書の解說”,下水道協會誌,Vol. 26,No. 307,pp. 30-34,1989。
    何春松,灰渣熔融技術之發展,國立台灣大學「台大工程」學刊,第八十四期,pp. 137-152,2002。
    宋威岳,“石化產業廢料及模擬放射性廢料電漿玻璃化處理技術之研究”,碩士論文,國立台灣海洋大學材料工程研究所,1999。
    金子宣治,“石灰系燒卻灰の土質改良材利用”,下水道協會誌,Vol. 27,No. 315,1990。
    邱太銘,“電漿焚化熔融技術於廢棄物處理之應用”,核研季刊,Vol. 27,pp. 23-34,1998。
    倪文、李建平、方興、陳德平、陳那那,“礦物材料學導論”,科學出版社,pp. 33-34,1998。
    洪聰民,“垃圾焚化灰渣利用之研發建制及推廣計畫(第三年)-都市垃圾焚化爐飛灰電漿熔融處理之評估”,原子能委員會核能研究所,2000。
    徐登科、關家倫,“有害廢棄物穩定化/固化處理特性探討”,污泥處理與處置研討會論文集,工研院化工所,1991。
    張旭彰,“灰渣熔融處理法的理論與實務”,工業污染防治,第十二卷, 第四期,pp. 95-112,1993。
    張旭彰,“都市垃圾焚化灰渣熔融處理操作特性之研究”,碩士論文,國立中央大學環境工程研究所,1992。
    陳志強,“汽油油品及引擎排放廢氣中金屬元素之特徵”,國立成功大學環境工程系碩士論文,2002。
    張祖恩、魏玉麟、王鴻博、許琦、黃沐域,“焚化灰渣物化特性及其溶出毒性之調查研究”,第十四屆廢棄物處理技術研討會論文集, 中華民國環境工程學會,pp. 6-20~6-23,1999。
    張祖恩、柯明賢、施百鴻,“焚化灰渣資源化技術”,廢棄物資源再生技術研究成果發表會論文集,國科會工程科技推展中心,pp. 115-130,2000。
    郭益銘,“焚化灰渣玻璃化之評估研究”,博士論文,國立成功大學環境工程學系,2004。
    森田榮一,“流動--旋回溶融爐--加古川市”,下水道協會誌,Vol. 26,No. 307,pp. 57-62,1989。
    電池資訊網,http://www.nsc.gov.tw/dept/acro/version01/battery/basictheory.htm, 2006。
    葉明吉,“廢乾電池回收處理政策之探討”,資源與環境學術研討會,2005。
    黃奕叡,“廢棄物焚化灰渣熱熔之研究”,碩士論文,國立成功大學環境工程學系,2002。
    傅聖峰,“以熱熔法處理電鍍污泥之研究”,碩士論文,國立成功大學環境工程學系,2004。
    鈴木孝、藤本忠生,“都市ごみ燒卻殘渣の熔融處理”,都市清掃,Vol. 40,No. 159,1987。
    詹炯淵,“垃圾焚化飛灰管理對策之研究”,碩士論文,國立台灣大學環境工程學研究所,2001。
    經濟部標準檢驗局,耐火磚視孔隙度、吸水率及比重試驗法,CNS 619/R3013,1986。
    趙家麟,“台南新聞C4版,中國時報”,中華民國九十三年七月二十一日星期三,2004。
    樊邦堂,“環境工程化學”,科技圖書股份有限公司,pp. 311-318,1994。
    蔡啟昌,“氯含量對廢棄物焚化過程多重重金屬物種形成及分佈之研究”,碩士論文,國立中央大學環境工程研究所,1998。
    魏銘彥,“有害廢棄物的高溫熔渣焚化”,中華民國環境工程學會第六屆廢棄物處理技術研討會論文集,1991。
    蕭炳欽,“都市垃圾灰渣與下水污泥灰渣共同高溫熔融處理操作溫度特性之研究”,碩士論文,國立中央大學環境工程學研究所,1993。
    顧順榮、鐘昀泰、張木彬,“台灣地區都市垃圾焚化灰份中重金屬濃度及TCLP溶出之評估”,第十屆廢棄物技術研討會論文集,pp. 271-279,1995。

    下載圖示 校內:2012-02-04公開
    校外:2012-02-04公開
    QR CODE