| 研究生: |
王毓晟 Wang, Yu-Cheng |
|---|---|
| 論文名稱: |
利用相場模擬擬靜態裂縫開展 Modeling Quasi-static Crack Propagation by Phase Field |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 破壞韌性 、有限元素法 、材料遞減函數 |
| 外文關鍵詞: | Fracture toughness, Finite element method, Material degradation function |
| 相關次數: | 點閱:149 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上模擬裂縫開展問題的作法多採取凝聚元素鋪設於裂縫開裂沿線上,此方法預先鋪排大量特殊元素使其後續產生開裂後的不連續面,所產生的計算成本相對高;相場法的出現提供了以連續場去近似裂縫面的不連續,而且相場模擬中不預設裂縫開展方向,對於不能確定裂縫開展方向的問題,省去了鋪排大量凝聚元素與預設方向的困擾。
本文運用特定相場分佈形式,配合材料弱化之二次遞減函數或指數型遞減函數在有限元素軟體中建立相場模型,分析脆性裂縫開展問題。分別模擬中央裂縫問題及三點彎矩破壞試驗,並討論載重–位移曲線和裂縫開展過程受到遞減函數形式與其中參數值,裂縫附近元素大小等變因的影響。再以相場模擬不對稱三點彎矩破壞試驗預測開展情形與實驗數據比對。
Different than the traditional cohesive zone model used to simulate the crack propagation, a phase field model approximates the discontinuous crack faces by a continuous phase field. Instead of setting up the cohesive elements along the expected crack path, phase field model can be applied to the fracture problem without knowing the direction of crack propagation in advance.
We applied the phase field model in FEM software to simulate the fracture problems including a center crack under tensile load, a three-point bending fracture test and an asymmetric three-point bending fracture test. A specific phase field distribution and two types of degradation function were used in our model, and how they affect the simulations were also discussed. The phase approximated crack for an asymmetric three-point bending fracture test is compared to experimental data.
[1]Griffith, A.A. (1921). The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221, 163-198.
[2]Francfort, G.A., & Marigo, J.-J. (1998). Revisiting Brittle Fracture as An Energy Minimization Problem. Journal of The Mechanics and Physics of Solids, 46, 1319-1342.
[3]Bourdin, B., Francfort, G.A., & Marigo, J.-J. (2000). Numerical Experiments in Revisited Brittle Fracture. Journal of the Mechanics and Physics of Solids. 48. 797-826.
[4]Miehe, C., Hofacker, M., & Welschinger, F. (2010). A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits. Computer Methods in Applied Mechanics and Engineering, 199, 2765-2778.
[5]Miehe, C., Welschinger, F., & Hofacker, M. (2010). Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 83, 1273-1311.
[6]Pham, K., Amor, H., Marigo, J.-J., & Maurini, C. (2011). Gradient Damage Models and Their Use to Approximate Brittle Fracture. International Journal of Damage Mechanics, 20, 618-652.
[7]Sargado, J.M., Keilegavlen, E., Berre, I., & Nordbotten, J.M. (2018). High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. Journal of the Mechanics and Physics of Solids, 111, 458-489.
[8]Wu, J.-Y. & Nguyen, V.P. (2018). A Length Scale Insensitive Phase-Field Damage Model for Brittle Fracture. Journal of the Mechanics and Physics of Solids. 119. 20-42.
[9]Miehe, C. (1998). Comparison of two algorithms for the computation of fourth-order isotropic tensor functions. Computers & Structures, 66, 37-43.
[10]Gong, J.-H., Chen, Y.-F. & Li, C.-Y. (2001). Statistical Analysis of Fracture Toughness of Soda–Lime Glass Determined by Indentation. Journal of Non-Crystalline Solids, 279, 219-223.
[11]Anderson, T.L. (1995). Fracture Mechanics: Fundamentals and Applications, Second Edition, 601-610.
[12]Tada, H. (1973). The Stress Analysis of Cracks Handbook, Third Edition.
[13]Ingraffea, A., & Grigoriu, M. (1990). Probabilistic Fracture Mechanics: A Validation of Predictive Capability. Technical Reprot. DTIC Document
校內:2025-11-12公開