簡易檢索 / 詳目顯示

研究生: 蔣婉婷
Jiang, Wan-Ting
論文名稱: CuInS2奈米管陣列之製備與其應用於太陽能電池之研究
Formation of CuInS2 nanotube arrays for use in solar cells
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: CuInS2奈米管陣列連續式離子層吸附與反應法太陽能電池
外文關鍵詞: CuInS2, nanotube array, successive ionic layer adsorption and reaction, solar cell
相關次數: 點閱:55下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用氧化鋅奈米線陣列為模版,以連續式離子層吸附與反應(Successive Ionic Layer Adsorption and Reaction, SILAR)後,並在硫的氣氛下退火處理,成長具有奈米結構的CuInS2吸光材料。經掃描式電子顯微鏡觀察CuInS2之型態,發現其具有奈米管狀的結構。由能量分散圖元素分析,顯示沉積之CuInS2奈米管陣列的銅、銦、硫接近定組成比1:1:2。X光繞射圖譜與Raman光譜圖分析證實此沉積之CuInS2奈米管具有黃銅礦(chalcopyrite)相態,而穿透式電子顯微鏡分析則顯示此CuInS2奈米管為多晶的結構。以紫外-可見-紅外光反射圖譜發現其CuInS2奈米管於可見光區域具有強吸收。進一步以此CuInS2奈米管陣列為光電極組裝液態光電化學太陽能電池,當其長度為3μm時,目前所得到之效率為0.47%。

    CuInS2 nanotube arrays have been synthesized on the ITO substrate. ZnO nanowire array was employed to be the template for the process of successive ionic layer adsorption and reaction (SILAR). After annealing in sulfur atmosphere, SEM images show that nanotube array was formed on the substrate. EDAX analysis reveals that the nanotubes possess a nearly stoichiometric composition in the CuInS2. Raman spectra and XRD patterns indicate that the CuInS2 nanotube arrays exhibit chalcopyrite phases. TEM characterization confirms that the individual CuInS2 nanotube has polycrystalline structure. UV-vis-NIR spectra indicate that the CuInS2 nanotubes possess strong absorption in visible light region. Solar cells were fabricated using the CuInS2 nanotube array as the photoanode. Up to now, an efficiency of 0.47% is achieved using a 3μm-thick CuInS2 nanotube array.

    摘要 I Abstract II 目錄 III 表目錄 VII 圖目錄 IX 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 2 第二章 文獻回顧與理論基礎 4 2-1太陽能電池簡介 4 2-1.1結晶矽太陽能電池 4 2-1.2薄膜型太陽能電池 5 2-1.3染料敏化太陽能電池 7 2-2 CuInS2材料性質 11 2-2.1 晶體結構 11 2-2.2 相圖與化學組成 14 2-3成長CuInS2薄膜之方法 18 2-3.1 熱蒸鍍 19 2-3.2 分子束磊晶 21 2-3.3 濺鍍法 21 2-3.4 噴霧熱解法 21 2-3.5 電化學沉積法 22 2-3.6 硫化合成法 22 2-3.7 連續式離子層吸附與反應法 23 2-4 CuInS2薄膜式太陽能電池之組成結構與工作原理 26 2-4.1 基板(substrate) 26 2-4.2透光層(window layer) 27 2-4.3吸收層(absorber layer) 28 2-4.4 緩衝層(buffer layer) 31 2-4.5 金屬/導電玻璃對電極 32 2-4.6 CuInS2薄膜式太陽能電池之工作原理 33 2-5 超薄吸收層太陽能電池之組成結構與工作原理 33 2-5.1緻密薄膜層 35 2-5.2電子傳導層 37 2-5.3 超薄吸收層 38 2-5.4電洞傳導層 39 2-6 光電化學太陽能電池(photoelectrochemical cells, PEC) 40 2-6.1 電解液 41 2-7太陽能電池之電流電壓輸出特性 43 2-7.1 太陽光的頻譜照度 43 2-7.2 光電轉換總效率的計算 46 2-7.3 入射光電轉化效率 48 第三章 實驗步驟與研究方法 50 3-1 實驗材料 50 3-2實驗儀器設備 51 3-3實驗流程 56 3-3.1基板前處理 56 3-3.2 以濕式化學法成長氧化鋅奈米線 57 3-3.3以SILAR製備CuInS2吸收層 58 3-3.4硫氣氛退火處理 59 3-3.5 CuInS2液態光電化學太陽能電池之組裝 59 3-4.1掃描式電子顯微鏡 61 3-4.2 UV-VIS-NIR光譜儀 62 3-4.3拉曼光譜分析 64 第四章 結果與討論 66 4-1 ZnO奈米線之成長與特性分析 66 4-2 SILAR法之水溶液pH值對製備CuInS2奈米管之影響 68 4-2.1 不同陰離子水溶液pH值成長之CuInS2奈米管性質比較 68 4-2.2 成長奈米管之硫化鈉水溶液pH值對光電化學電池效率之影響 73 4-3銅離子濃度對成長CIS奈米管之影響 75 4-3.1 銅離子濃度對成長CIS奈米管元素組成之影響 75 4-3.2銅離子濃度對成長之CIS奈米管型態之影響 76 4-3.3銅離子濃度對成長之CIS奈米管光學性質之影響 81 4-3.4銅離子濃度對成長之CIS奈米管結構之影響 83 4-3.5銅離子濃度對成長之CIS奈米管電池效率之影響 87 4-4多硫成份電解液 88 4-5光電化學太陽能電池 91 第五章 總結論 94 第六章 參考文獻 96

    [1] 郭禮青, 工業材料雜誌. 2003, 203, 137.
    [2] Lidgate D, Green energy Engineering science and eduction joural 1992, 221.
    [3] Grätzel M, Nature 2001, 414, 338.
    [4] Chapin D, Fuller C, Pearson G, J. Appl. Phys. 1954, 25, 676.
    [5] Zhao J, Wang A, Green MA, Ferrazza F, Appl. Phys. Lett. 1998, 73, 1991.
    [6] Yang J, Banerjee A, Sugiyama S, Guha S, 26th IEEE Photovoltaic Specialists Conference, Anaheim 1997, 563.
    [7] Contreras MA, Ramanathan K, AbuShama J, Hasoon F, Young D, Egass B, Noufi R, Solar Cells Progress in Photovoltaic 2005, 13, 209.
    [8] Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P, 17th European Photovoltaic Solar Energy Conference 2001, 995.
    [9] Grätzel M, Nature 1991, 353, 737.
    [10] Chiba Y, Islam A, Kakutani K, Komiya R, Koide N, Han L, 15th International Photovoltaic Science and Engineering Conference, Shanghai 2005, 665.
    [11] H. Alarcon, G. Boschloo, P. Mendoza, J. L. Solis, A. Hagfeldt, J. Phys. Chem. B. 2005, 109,18483.
    [12] Martin A Green, Third Generation Photovoltaics 2003, 3.
    [13] Martin A G, Keith E, David L K, Yoshihiro H, Wilhelm W, prog. Photovolt: Res. Appl. 2007, 15, 35.
    [14] Yunbin H, Japanese Journal of Applied Physics, Part 2: Letters 2002, p.484.
    [15] J.E. Jaffe and Alex Zunger, Phys. Rev. B. 1983, 28, 5822.
    [16] O’Regan B, Lenzmann F, Muis R, Wienke J, Chem. Mater. 2002, 14, 5023.
    [17] S.H. Wei, S.B. Zhang, and A, Phys. Rev. B. 1999, 59, 2478.
    [18] S.H. Wei, L.G. Ferreira, and A. Zunger, Phys. Rev. B. 1992, 45, 2533.
    [19] S.H. Wei, S.B. Zhang, and A. Zunger., Phys. Rev. B. 1999, 59, 2478.
    [20] Alvarez-Garcıa J, Pe´rez-Rodrı´guez A, Barcones B., Romano-Rodrı’ guez A and Morante J. R., Scheer R., Janotti A. and Wei Su-Huai, Appl. Phys. Lett. 2002, 80,562.
    [21] Binsma J.J.M., Giling L.J., Bloem. J., J. Cryst. Growth. 1980, 50, 429.
    [22] Krunksa M, Bijakina O, Varema T, Mikli V, Mellikov E, Thin Solid Films 1999, 338, 125.
    [23] Lewerenz H.J., Sol. Energy Mater. Sol. Cells. 2004, 83, 395.
    [24] Binsma J., Giling L., Bloem J., J. Lumin. 1982, 27, 55.
    [25] Ueng Y., Hwang H., J. Phys. Chem. Solids. 1989, 50, 1297.
    [26] Krustok J., Raudoja J., Collan H., Thin Solid Films 2001, 387, 195.
    [27] Krustok J., Raudoja J., Schon J., Yakushev M., Collan H., Thin Solid Films 2000, 361, 406.
    [28] Krustok J., Schon J. H., Collan, H., Yakushev M., Madasson J., Bucher E., J. Appl. Phys. 1999, 86, 364.
    [29] Joris Hofhuis, Joop Schoonman, and Albert Goossens, J. Phys. Chem. C. 2008, XXXX, xxx, 000.
    [30] Rockett A. and Birkmire R. W., J. Appl. Phys. 1991, 70, 81.
    [31] Lewerenz H.J., Sol. Energy Mater. Sol. Cells. 2004, 83, 395.
    [32] Tembjurbar D. and Hirde J.P., Thin Solid Films 1992, 215, 65.
    [33] Abou-Elfotouh F, Dunlavy D J,Coutts T.J., Solar Cells 1989, 27, 237.
    [34] Hahn H et al., Anorg Z, Allg .chem. 1953, 271, 153.
    [35] L.L. Kazmerski, J. Appl. Phys. 1977, 48, 3178.
    [36] H.J. Lewerenz, H. Goslowsky, K.-D. Huseman, Nature 1986, 321, 687.
    [37] K.W. Mitchell, G.A. Pollock, A.V. Mason, Proc. 20th IEEE Photovoltaic Specialists Conf., Las Vegas, 26–30 Sept. 1988, IEEE, New York 1988, 1542.
    [38] R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, Appl. Phys. Lett. 1993,63, 3294.
    [39] D. Braunger, Th. Dqrr, D. Hariskos, C.h. Kfble, Th. Walter, N. Wieser, H.W. Schock, Proc. 25th IEEE Photovoltaic Specialists Conf., Washington, May 13–17, 1996, IEEE, New York 1996, 1001.
    [40] R. Klenk, U. Blieske, V. Dieterle, K. Ellmer, S. Fiechter, I. Hengel, A. J7ger-Waldau, T. Kampschulte, Ch. Kaufmann, J. Klaer, M.Ch. Lux- Steiner, D. Braunger, D. Hariskos, M. Ruckh, H.W. Schock, Sol. Energy Mater. Sol. Cells. 1997, 49, 349.
    [41] T. Nakabayashi, T. Miyazawa, Y. Hashimoto, K. Ito, Sol. Energy Mater. Sol. Cells. 1997, 49, 375.
    [42] K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. Br7unig, Sol. Energy Mater. Sol. Cells. 2001, 67, 159.
    [43] Ranzaril M., Abaab M., Rezig B. andBrunei M., Mater. Res. Bull. 1997, 32, 10094015.
    [44] Ranzaril M, Abaab’ M., Rezig’ M. and Brunei’ M., Matuialr Rcaumb Buktin 1997, 32, 10094015.
    [45] Gossla M., Hahn Th., Metzner H.,Conrad J.,Geyer U., Thin solid film 1995, 268, 39.
    [46] Guillen C, Semicond. Sci. Technol. 2006, 21, 709.
    [47] Eberhardt J., Metzner H., Goldhahn R., Hudert F., Reislfhner U., Hqlsen C.,Cieslak J., Hahn Th.,Gossla M., Dietz A., Gobsch G., Witthuhn W., Thin Solid Film. 2005, 480, 415.
    [48] Kenchi K, Nakamura S, Sol. Energy Mater. Sol. Cells. 1997, 49, 327.
    [49] Terasako T, Yuji U, Seiki I, Tetsuya K, and Shirakata S, phys. stat. sol. 2006, 3, 2588.
    [50] Berenguier B, LewerenzH J, Electrochem. Comm. 2006 , 8, 165.
    [51] Wilhelm T, Berenguier B, Aggour M, Kanis M, Lewerenz H.J., C. R. Chimie. 2006, 9, 294.
    [52] Negami T, Hashimoto Y, Nishitani M, Wada T, Sol. Energy Mater. Sol. Cell.1997, 49, 343.
    [53] Klenk R., Blieske U., Dieterle V., Ellmer K., Fiechter S., Jäger-Waldau A., Hengel I., Sol. Energy Mater. Sol. Cells.1997, 49, 349.
    [54] Frederick O., Adurodija, Jinsoo Song, Sang D. Kim, Seok K. Kim, Kyung H. Yoon , Jap. J. App. Phys.1998, 37, 4248.
    [55] Gossla M, Metzner H, Mahnke HE, Jap. J. App. Phys. 1999, 86, 3624.
    [56] Yoshio Onuma, Kenji Takeuchi, Sumihiro Ichikawa, Mina Harada, Hiroko Tanaka, Ayumi Koizumi, Yumi Miyajima, Sol. Energy Mater. Sol. Cells.2001, 69, 261.
    [57] Ristov M, Sinadinovski G J and Grozdanov I, Thin Solid Films 1985, 123, 63.
    [58] Nicolau Y F, Appl. Surf. Sci. 1985, 22, 1061.
    [59] Nicolau Y F and Minnard J C, J. Cryst. Growth 1988, 92, 128.
    [60] Nicolau Y F, Dupuy M and Brunel M, J. Electrochem.Soc. 1988, 128, 1347.
    [61] Kanniainen T., Valkonen M., Lindroos S., Leskela M., Tapper U., Kauppinen E., Applied Surface Science 2001, 120, 58.
    [62] Könenkamp R., Dloczik L, K. Ernst, Olesch L., Physica E. 2002, 14, 219.
    [63] Könenkamp R., Ernst K., Fisher C.H., Lux-Steiner M.C., Rost C., Phys. Status Solid (A) 2000, 182,151.
    [64] Lévy-Clément C., Katty A., Bastide S., Zenia F., Mora I., Muñoz-Sanjosé V., Physica E. 2002, 14, 229.
    [65] Könenkamp R., Ernst K., Fisher C.H., Lux-Steiner M.C. Poschenrieder, F. Zenia, Lévy-Clément C, Wagner S, Appl. Phys. Lett. 2000, 77 2575.
    [66] Tena-Zaera R, Katty A, Bastide S, Lévy-Clément C,O’Regan B, Muñoz- Sanjosé B, Thin Solid Films 2005, 486 , 372.
    [67] Kumara G.R.A., Kaneko S., Okuya M., Tennakone K., Langmuir 2002, 18, 10493.
    [68] Wienke J., Krunks M., and Lenzmann F., Semicond. Sci. Technol. 2003, 18, 876.
    [69] Wahi A., Engelhardt R., Hoyer P., and Konenkamp R., in Proc. of the 11th Photovoltaic Solar Energy Conference 1992, 714.
    [70] Kaiser I, Ernst K, Fischer C.-H, Könenkamp R, Rost C, Sieber I, Lux -Steiner M. Ch, Sol. Energy Mater. Sol. Cells 2001, 67, 89.
    [71] Gerardo Larramona, Christophe Chone´, Alain Jacob, Daisuke Sakakura, Bruno Delatouche,Daniel Pe´re´, Xavier Cieren, Masashi Nagino, and Rocı´o Bayo´n, Chem. Mater. 2006, 18, 1688.
    [72] Hans Joachim Möller, Artech House 1993.
    [73] http://www.pvresources.com/en/technologies.php
    [74]Yoshihiro Hamakawa, Thin solid film 2003, 33, 165.
    [75] Q. Shen and T. Toyoda, Japanese Journal of Applied Physics. 2004, 43, 2946.
    [76] C. H. J. Liu, J. Olsem, D. R. Saunders and J. H. Wang, J. Electrochem. Soc.:Electrochemical Science and Technology 1981, 128, 1224.
    [77] Y. Ueno, H. Minoura, T. Nishikawa and M. Tsuiki, J. Electrochem. Soc.: Electrochemical Science and Technology 1983, 130, 43.
    [78] J. F. Reder and M Rusek, J. Phys. Chem.1986, 90, 824.
    [79] S. Licht, Nature 1987, 330,148 .
    [80] G. Milczareka, A. Kasuyab, S. Mamykinb, T. Arib, K. Shinodb and K. Tohji, International Journal of Hydrogen Energy 2003, 28, 919.
    [81] M. Gratzel, Nature 2001, 414, 338.
    [82] Y. Bessekhouada, M. Mohammedib and M. Trari, Solar Energy Materials & Solar cells 2006, 73, 339.
    [83] R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 1994, 98, 3183.
    [84] G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Solar Energy Material & Solar cells 2001, 70, 85.
    [85] Antonio Luque, Steven Hegedus, Handbook of Photovoltaic Science and Engineering 2003, 63.
    [86] http://www.newport.com/store/genproduct.aspx?id=411919&lang=
    1033 §ion=Detail
    [87] Jenny Nelson, The Physics of Solar Cells 2002, 12.
    [88] Le'vy-Cle'ment et.al., adv. Mater. 2005, 17, 1512.
    [89] Robel I, Subramanian V, Kuno M, and Prashant V. Kamat, J. Am. Chem. Soc. 2006, 128, 2385.
    [90] 汪建民,材料分析2004.
    [91] G.Binnig, C.F.Quate and Ch.Gerber, Phys .Rev. Lett. 1996, 930.
    [92] http://www.topometrix.com/spmguide/1-2-1.htm
    [93] JASCO V-670 60 mm integrating Sphere Handware/Function Manual.
    [94] 賴致遠, 碩士論文 (國立成功大學). 2006.
    [95] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature 1976, 261, 402.
    [96] A. Hagfeldt and M. Gratzel, Acc. Chem. Res. 2000, 33, 269.
    [97] P. Wang, S. M. Zakeeruddin, M. Gratzel, Journal of Fluorine Chemistry 2004, 125, 1241.
    [98] P. Wang, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Gratzel, J. Am. Chem. Soc. 2004, 126, 13590.
    [99] K. Tennakone, J. Bandara, P.K.M. Bandaranayake, G.R.A. Kumara, A. Konno, Jap. J. Appl. Phys. 2001, 40, 732.
    [100] E. Paloares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, Chem. Commun. 2002, 14, 1464.
    [101] A. Kay, M. Gratzel, Chem. Mater. 2002, 14, 2930.
    [102] F. Lenzmann, M. Nanu, O. Kijatkina, A. Belaidi, E-MRS Spring Meeting, Strasbourg.
    [103] Catelijne Grasso, Marc Burgelman, Thin Solid Film 2004, 451, 156.
    [104] Zaharescu M, Crisan I, Mosevic I, J. Sol-Gel Sci Technol. 1998, 13, 769.
    [105] Brian L. Bischof P. and Marc A. Anderson, Chem. Mater. 1995, 7, 1772.
    [106] Alexi C, Larry R, Johnson, Valery N, Zack S, Sue A. Adv Mater. 2000, 12, 1689.
    [107] Tennakone K., Kumara Grra., Kumarasinghe A.R., Wijayantha K.G.U., Sirimanne P.M., Semicond. Sci. Technol. 1995, 10,1689.
    [108] O’Regan B., Schwartz D.T., Chem. Mater. 1998, 10, 1501.
    [109] Tennakone K., Senadeera G.K.R., Silva Dbra. De, Kottegoda I.R.M., Appl. Phys. Lett. 2000, 77, 2367.
    [110] Sirimanne P.M., Jeranko T., Bogdanoff P., Fiechter S. Tributsch, H., Semicond. Sci. Technol. 2003, 18, 708.
    [111] Perera V.P., Tennakone K., Sol. Energy Mater. Sol. Cells 2003, 79, 249.

    下載圖示 校內:2014-08-06公開
    校外:2014-08-06公開
    QR CODE