| 研究生: |
蔣婉婷 Jiang, Wan-Ting |
|---|---|
| 論文名稱: |
CuInS2奈米管陣列之製備與其應用於太陽能電池之研究 Formation of CuInS2 nanotube arrays for use in solar cells |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | CuInS2 、奈米管陣列 、連續式離子層吸附與反應法 、太陽能電池 |
| 外文關鍵詞: | CuInS2, nanotube array, successive ionic layer adsorption and reaction, solar cell |
| 相關次數: | 點閱:55 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用氧化鋅奈米線陣列為模版,以連續式離子層吸附與反應(Successive Ionic Layer Adsorption and Reaction, SILAR)後,並在硫的氣氛下退火處理,成長具有奈米結構的CuInS2吸光材料。經掃描式電子顯微鏡觀察CuInS2之型態,發現其具有奈米管狀的結構。由能量分散圖元素分析,顯示沉積之CuInS2奈米管陣列的銅、銦、硫接近定組成比1:1:2。X光繞射圖譜與Raman光譜圖分析證實此沉積之CuInS2奈米管具有黃銅礦(chalcopyrite)相態,而穿透式電子顯微鏡分析則顯示此CuInS2奈米管為多晶的結構。以紫外-可見-紅外光反射圖譜發現其CuInS2奈米管於可見光區域具有強吸收。進一步以此CuInS2奈米管陣列為光電極組裝液態光電化學太陽能電池,當其長度為3μm時,目前所得到之效率為0.47%。
CuInS2 nanotube arrays have been synthesized on the ITO substrate. ZnO nanowire array was employed to be the template for the process of successive ionic layer adsorption and reaction (SILAR). After annealing in sulfur atmosphere, SEM images show that nanotube array was formed on the substrate. EDAX analysis reveals that the nanotubes possess a nearly stoichiometric composition in the CuInS2. Raman spectra and XRD patterns indicate that the CuInS2 nanotube arrays exhibit chalcopyrite phases. TEM characterization confirms that the individual CuInS2 nanotube has polycrystalline structure. UV-vis-NIR spectra indicate that the CuInS2 nanotubes possess strong absorption in visible light region. Solar cells were fabricated using the CuInS2 nanotube array as the photoanode. Up to now, an efficiency of 0.47% is achieved using a 3μm-thick CuInS2 nanotube array.
[1] 郭禮青, 工業材料雜誌. 2003, 203, 137.
[2] Lidgate D, Green energy Engineering science and eduction joural 1992, 221.
[3] Grätzel M, Nature 2001, 414, 338.
[4] Chapin D, Fuller C, Pearson G, J. Appl. Phys. 1954, 25, 676.
[5] Zhao J, Wang A, Green MA, Ferrazza F, Appl. Phys. Lett. 1998, 73, 1991.
[6] Yang J, Banerjee A, Sugiyama S, Guha S, 26th IEEE Photovoltaic Specialists Conference, Anaheim 1997, 563.
[7] Contreras MA, Ramanathan K, AbuShama J, Hasoon F, Young D, Egass B, Noufi R, Solar Cells Progress in Photovoltaic 2005, 13, 209.
[8] Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P, 17th European Photovoltaic Solar Energy Conference 2001, 995.
[9] Grätzel M, Nature 1991, 353, 737.
[10] Chiba Y, Islam A, Kakutani K, Komiya R, Koide N, Han L, 15th International Photovoltaic Science and Engineering Conference, Shanghai 2005, 665.
[11] H. Alarcon, G. Boschloo, P. Mendoza, J. L. Solis, A. Hagfeldt, J. Phys. Chem. B. 2005, 109,18483.
[12] Martin A Green, Third Generation Photovoltaics 2003, 3.
[13] Martin A G, Keith E, David L K, Yoshihiro H, Wilhelm W, prog. Photovolt: Res. Appl. 2007, 15, 35.
[14] Yunbin H, Japanese Journal of Applied Physics, Part 2: Letters 2002, p.484.
[15] J.E. Jaffe and Alex Zunger, Phys. Rev. B. 1983, 28, 5822.
[16] O’Regan B, Lenzmann F, Muis R, Wienke J, Chem. Mater. 2002, 14, 5023.
[17] S.H. Wei, S.B. Zhang, and A, Phys. Rev. B. 1999, 59, 2478.
[18] S.H. Wei, L.G. Ferreira, and A. Zunger, Phys. Rev. B. 1992, 45, 2533.
[19] S.H. Wei, S.B. Zhang, and A. Zunger., Phys. Rev. B. 1999, 59, 2478.
[20] Alvarez-Garcıa J, Pe´rez-Rodrı´guez A, Barcones B., Romano-Rodrı’ guez A and Morante J. R., Scheer R., Janotti A. and Wei Su-Huai, Appl. Phys. Lett. 2002, 80,562.
[21] Binsma J.J.M., Giling L.J., Bloem. J., J. Cryst. Growth. 1980, 50, 429.
[22] Krunksa M, Bijakina O, Varema T, Mikli V, Mellikov E, Thin Solid Films 1999, 338, 125.
[23] Lewerenz H.J., Sol. Energy Mater. Sol. Cells. 2004, 83, 395.
[24] Binsma J., Giling L., Bloem J., J. Lumin. 1982, 27, 55.
[25] Ueng Y., Hwang H., J. Phys. Chem. Solids. 1989, 50, 1297.
[26] Krustok J., Raudoja J., Collan H., Thin Solid Films 2001, 387, 195.
[27] Krustok J., Raudoja J., Schon J., Yakushev M., Collan H., Thin Solid Films 2000, 361, 406.
[28] Krustok J., Schon J. H., Collan, H., Yakushev M., Madasson J., Bucher E., J. Appl. Phys. 1999, 86, 364.
[29] Joris Hofhuis, Joop Schoonman, and Albert Goossens, J. Phys. Chem. C. 2008, XXXX, xxx, 000.
[30] Rockett A. and Birkmire R. W., J. Appl. Phys. 1991, 70, 81.
[31] Lewerenz H.J., Sol. Energy Mater. Sol. Cells. 2004, 83, 395.
[32] Tembjurbar D. and Hirde J.P., Thin Solid Films 1992, 215, 65.
[33] Abou-Elfotouh F, Dunlavy D J,Coutts T.J., Solar Cells 1989, 27, 237.
[34] Hahn H et al., Anorg Z, Allg .chem. 1953, 271, 153.
[35] L.L. Kazmerski, J. Appl. Phys. 1977, 48, 3178.
[36] H.J. Lewerenz, H. Goslowsky, K.-D. Huseman, Nature 1986, 321, 687.
[37] K.W. Mitchell, G.A. Pollock, A.V. Mason, Proc. 20th IEEE Photovoltaic Specialists Conf., Las Vegas, 26–30 Sept. 1988, IEEE, New York 1988, 1542.
[38] R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, Appl. Phys. Lett. 1993,63, 3294.
[39] D. Braunger, Th. Dqrr, D. Hariskos, C.h. Kfble, Th. Walter, N. Wieser, H.W. Schock, Proc. 25th IEEE Photovoltaic Specialists Conf., Washington, May 13–17, 1996, IEEE, New York 1996, 1001.
[40] R. Klenk, U. Blieske, V. Dieterle, K. Ellmer, S. Fiechter, I. Hengel, A. J7ger-Waldau, T. Kampschulte, Ch. Kaufmann, J. Klaer, M.Ch. Lux- Steiner, D. Braunger, D. Hariskos, M. Ruckh, H.W. Schock, Sol. Energy Mater. Sol. Cells. 1997, 49, 349.
[41] T. Nakabayashi, T. Miyazawa, Y. Hashimoto, K. Ito, Sol. Energy Mater. Sol. Cells. 1997, 49, 375.
[42] K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. Br7unig, Sol. Energy Mater. Sol. Cells. 2001, 67, 159.
[43] Ranzaril M., Abaab M., Rezig B. andBrunei M., Mater. Res. Bull. 1997, 32, 10094015.
[44] Ranzaril M, Abaab’ M., Rezig’ M. and Brunei’ M., Matuialr Rcaumb Buktin 1997, 32, 10094015.
[45] Gossla M., Hahn Th., Metzner H.,Conrad J.,Geyer U., Thin solid film 1995, 268, 39.
[46] Guillen C, Semicond. Sci. Technol. 2006, 21, 709.
[47] Eberhardt J., Metzner H., Goldhahn R., Hudert F., Reislfhner U., Hqlsen C.,Cieslak J., Hahn Th.,Gossla M., Dietz A., Gobsch G., Witthuhn W., Thin Solid Film. 2005, 480, 415.
[48] Kenchi K, Nakamura S, Sol. Energy Mater. Sol. Cells. 1997, 49, 327.
[49] Terasako T, Yuji U, Seiki I, Tetsuya K, and Shirakata S, phys. stat. sol. 2006, 3, 2588.
[50] Berenguier B, LewerenzH J, Electrochem. Comm. 2006 , 8, 165.
[51] Wilhelm T, Berenguier B, Aggour M, Kanis M, Lewerenz H.J., C. R. Chimie. 2006, 9, 294.
[52] Negami T, Hashimoto Y, Nishitani M, Wada T, Sol. Energy Mater. Sol. Cell.1997, 49, 343.
[53] Klenk R., Blieske U., Dieterle V., Ellmer K., Fiechter S., Jäger-Waldau A., Hengel I., Sol. Energy Mater. Sol. Cells.1997, 49, 349.
[54] Frederick O., Adurodija, Jinsoo Song, Sang D. Kim, Seok K. Kim, Kyung H. Yoon , Jap. J. App. Phys.1998, 37, 4248.
[55] Gossla M, Metzner H, Mahnke HE, Jap. J. App. Phys. 1999, 86, 3624.
[56] Yoshio Onuma, Kenji Takeuchi, Sumihiro Ichikawa, Mina Harada, Hiroko Tanaka, Ayumi Koizumi, Yumi Miyajima, Sol. Energy Mater. Sol. Cells.2001, 69, 261.
[57] Ristov M, Sinadinovski G J and Grozdanov I, Thin Solid Films 1985, 123, 63.
[58] Nicolau Y F, Appl. Surf. Sci. 1985, 22, 1061.
[59] Nicolau Y F and Minnard J C, J. Cryst. Growth 1988, 92, 128.
[60] Nicolau Y F, Dupuy M and Brunel M, J. Electrochem.Soc. 1988, 128, 1347.
[61] Kanniainen T., Valkonen M., Lindroos S., Leskela M., Tapper U., Kauppinen E., Applied Surface Science 2001, 120, 58.
[62] Könenkamp R., Dloczik L, K. Ernst, Olesch L., Physica E. 2002, 14, 219.
[63] Könenkamp R., Ernst K., Fisher C.H., Lux-Steiner M.C., Rost C., Phys. Status Solid (A) 2000, 182,151.
[64] Lévy-Clément C., Katty A., Bastide S., Zenia F., Mora I., Muñoz-Sanjosé V., Physica E. 2002, 14, 229.
[65] Könenkamp R., Ernst K., Fisher C.H., Lux-Steiner M.C. Poschenrieder, F. Zenia, Lévy-Clément C, Wagner S, Appl. Phys. Lett. 2000, 77 2575.
[66] Tena-Zaera R, Katty A, Bastide S, Lévy-Clément C,O’Regan B, Muñoz- Sanjosé B, Thin Solid Films 2005, 486 , 372.
[67] Kumara G.R.A., Kaneko S., Okuya M., Tennakone K., Langmuir 2002, 18, 10493.
[68] Wienke J., Krunks M., and Lenzmann F., Semicond. Sci. Technol. 2003, 18, 876.
[69] Wahi A., Engelhardt R., Hoyer P., and Konenkamp R., in Proc. of the 11th Photovoltaic Solar Energy Conference 1992, 714.
[70] Kaiser I, Ernst K, Fischer C.-H, Könenkamp R, Rost C, Sieber I, Lux -Steiner M. Ch, Sol. Energy Mater. Sol. Cells 2001, 67, 89.
[71] Gerardo Larramona, Christophe Chone´, Alain Jacob, Daisuke Sakakura, Bruno Delatouche,Daniel Pe´re´, Xavier Cieren, Masashi Nagino, and Rocı´o Bayo´n, Chem. Mater. 2006, 18, 1688.
[72] Hans Joachim Möller, Artech House 1993.
[73] http://www.pvresources.com/en/technologies.php
[74]Yoshihiro Hamakawa, Thin solid film 2003, 33, 165.
[75] Q. Shen and T. Toyoda, Japanese Journal of Applied Physics. 2004, 43, 2946.
[76] C. H. J. Liu, J. Olsem, D. R. Saunders and J. H. Wang, J. Electrochem. Soc.:Electrochemical Science and Technology 1981, 128, 1224.
[77] Y. Ueno, H. Minoura, T. Nishikawa and M. Tsuiki, J. Electrochem. Soc.: Electrochemical Science and Technology 1983, 130, 43.
[78] J. F. Reder and M Rusek, J. Phys. Chem.1986, 90, 824.
[79] S. Licht, Nature 1987, 330,148 .
[80] G. Milczareka, A. Kasuyab, S. Mamykinb, T. Arib, K. Shinodb and K. Tohji, International Journal of Hydrogen Energy 2003, 28, 919.
[81] M. Gratzel, Nature 2001, 414, 338.
[82] Y. Bessekhouada, M. Mohammedib and M. Trari, Solar Energy Materials & Solar cells 2006, 73, 339.
[83] R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 1994, 98, 3183.
[84] G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Solar Energy Material & Solar cells 2001, 70, 85.
[85] Antonio Luque, Steven Hegedus, Handbook of Photovoltaic Science and Engineering 2003, 63.
[86] http://www.newport.com/store/genproduct.aspx?id=411919&lang=
1033 §ion=Detail
[87] Jenny Nelson, The Physics of Solar Cells 2002, 12.
[88] Le'vy-Cle'ment et.al., adv. Mater. 2005, 17, 1512.
[89] Robel I, Subramanian V, Kuno M, and Prashant V. Kamat, J. Am. Chem. Soc. 2006, 128, 2385.
[90] 汪建民,材料分析2004.
[91] G.Binnig, C.F.Quate and Ch.Gerber, Phys .Rev. Lett. 1996, 930.
[92] http://www.topometrix.com/spmguide/1-2-1.htm
[93] JASCO V-670 60 mm integrating Sphere Handware/Function Manual.
[94] 賴致遠, 碩士論文 (國立成功大學). 2006.
[95] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature 1976, 261, 402.
[96] A. Hagfeldt and M. Gratzel, Acc. Chem. Res. 2000, 33, 269.
[97] P. Wang, S. M. Zakeeruddin, M. Gratzel, Journal of Fluorine Chemistry 2004, 125, 1241.
[98] P. Wang, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Gratzel, J. Am. Chem. Soc. 2004, 126, 13590.
[99] K. Tennakone, J. Bandara, P.K.M. Bandaranayake, G.R.A. Kumara, A. Konno, Jap. J. Appl. Phys. 2001, 40, 732.
[100] E. Paloares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, Chem. Commun. 2002, 14, 1464.
[101] A. Kay, M. Gratzel, Chem. Mater. 2002, 14, 2930.
[102] F. Lenzmann, M. Nanu, O. Kijatkina, A. Belaidi, E-MRS Spring Meeting, Strasbourg.
[103] Catelijne Grasso, Marc Burgelman, Thin Solid Film 2004, 451, 156.
[104] Zaharescu M, Crisan I, Mosevic I, J. Sol-Gel Sci Technol. 1998, 13, 769.
[105] Brian L. Bischof P. and Marc A. Anderson, Chem. Mater. 1995, 7, 1772.
[106] Alexi C, Larry R, Johnson, Valery N, Zack S, Sue A. Adv Mater. 2000, 12, 1689.
[107] Tennakone K., Kumara Grra., Kumarasinghe A.R., Wijayantha K.G.U., Sirimanne P.M., Semicond. Sci. Technol. 1995, 10,1689.
[108] O’Regan B., Schwartz D.T., Chem. Mater. 1998, 10, 1501.
[109] Tennakone K., Senadeera G.K.R., Silva Dbra. De, Kottegoda I.R.M., Appl. Phys. Lett. 2000, 77, 2367.
[110] Sirimanne P.M., Jeranko T., Bogdanoff P., Fiechter S. Tributsch, H., Semicond. Sci. Technol. 2003, 18, 708.
[111] Perera V.P., Tennakone K., Sol. Energy Mater. Sol. Cells 2003, 79, 249.