| 研究生: |
錢雲聖 Chian, Yun-Sheng |
|---|---|
| 論文名稱: |
製備矽醇改質之奈米氧化鐵粒子及其對抗癌藥物 capsaicin 攜帶釋放效率之探討 Preparation of silane modified nanomagnetite and the investigation on the loading and release of capsaicin |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 磁性奈米粒子 、乳糖酸 、原紫質 、熱治療 、藥物釋放 |
| 外文關鍵詞: | magnetic nanoparticle, lectobionic acid, protoporphyrin, drug release |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁性奈米材料於生醫領域的研究已相當廣泛,其獨特的超順磁特性及低生物毒性為主要應用重點,可同時作為磁性導引之藥物載體及熱治療粒子,連結上標靶分子後,可針對性的對病灶釋放藥物及提供熱治療。以有機熱解法製作磁性奈米粒子可達到以往共沉澱法不易產出的單一分散性磁性奈米粒子,有助於將奈米粒子尺寸進一步縮小並均勻化。
本研究是以有機相熱解法製備奈米磁性粒子,並使用 3-aminopropyltriethoxy silane (APTES) 以配位交換法改質成為親水相,探討奈米磁球的熱效應,並於表面先後接上乳糖酸及原紫質,乳糖酸針對肝癌細胞具有標靶作用,原紫質同時具有光治療、螢光標定及藥物抓取的功能。以X光繞射儀證實奈米磁性粒子為Fe3O4之晶相;而利用傅立葉轉換紅外線儀與熱重分析儀確認改質後矽醇的包覆及乳糖酸的鍵結;使用紫外-可見光圖譜確認原紫質存在於粒子表面的光學特性。並以TEM影像判斷矽醇配位交換反應的細節對於奈米粒子尺寸的影響,確認形成殼層狀Fe3O4@silane 之最佳反應條件。由磁性分析之磁滯曲線得知,Fe3O4、Fe3O4@silane的飽和磁化量分別為 36 emu/g與3.8 emu/g。最終利用雙重修飾乳糖酸及原紫質的奈米磁性粒子Fe3O4@silane-PP/LBA對新興抗癌藥物capsaicin作包覆及釋放的探討。
有機相磁性奈米粒子在施加高頻磁場下,於10分鐘內可達75℃,而經由矽醇改質為水相的磁性奈米粒子於10分鐘內可達 43℃,50分鐘內可達46℃,其熱效應明顯下降,但仍足以進行對癌細胞之熱治療。
The study on magnetic nanoparticles has already been widely developed in biological and medical fileds. The special properties on application of magnetic nanoparticles were the superparamagnetism and low cytotoxicity. The nanoparticles could act as a drug carrier guided by magnetic force and the medium of hyperthermia. By coupling with the active targeting ligand, theses nanoparticles can be formulated as multi-functional carrier with high affinity to specific molecular or cancer cell. Magnetic nanoparticles produced by high-temperature decomposition have narrow size-distribution which is difficult to achieve by traditional co-precipitation method. Such magnetic nanoparticles can be further minimize in size and avoid aggregation.
In this study, the magnetic nanoparticles were synthesized by high-temperature decomposition. To make the as-synthesis magnetic nanoparticles hydrophilic, 3-aminopropyltriethoxy silane (APTES) was modified on the surface of nanoparticles. And the thermal effect of the magnetic nanoparticles was investigated before and after silane ligand exchange reaction. We also conjugated lactobionic acid and protoporphyrin to Fe3O4@silane surface. Lactobionic acid was a targeting molecular to the hepatocyte cancer cell and protoporphyrin was known for the photodynamic therapy, fluoresce detection and a good host for the inclusion of guest molecular. X-ray diffraction confirmed that the structure of magnetic nanoparticles is Fe3O4. The modification of silane was confirmed by infrared diagram and thermogravimetric analyzer. And we observed the four specific peaks related to protoporpyrin on the ultraviolet-visible diagram of protoporphyrin coupled nanoparticles. By the electron microscopy pictures, we can identify and optimize the condition of ligand exchange reaction. The magnetic analyzer indicated that the saturation magnetization of Fe3O4 and Fe3O4@silane were 36 emu/g and 3.8 emu/g. Finally we investigate the loading and release profile of the neo anti-cancer drug capsaicin. Under the applied magnetic field, the temperature of Fe3O4 nanoparticle could increase up to 75℃ in 10 min, and the temperature of Fe3O4@silane could increase up to 43℃ in 10 min. There was a remarkable decrease after ligand exchange, but they still have sufficient potential on hyperthermia treatment.
1. H. Goesmann, C. Feldmann, Nanoparticulate functional materials, Angewandte Chemie International Edition, 2010, 49, 1362–1395.
2. A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angewandte Chemie International Edition, 2007, 46, 1222–1244.
3. A. Figuerola, R. Di Corato, L. Manna, T. Pellegrino, From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications, Pharmacological research, 2010, 62, 126–143.
4. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical application, Biomaterials, 2005, 26, 3995–4021.
5. R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrot, C.B. Taylor, Selective inductive heating of lymph nodes, Annals of surgery, 1957, 46, 596–606.
6. O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Advanced Drug Delivery Reviews, 2010, 62, 284–304.
7. H. Maeda, Wu J, T. Sawa, Y. Matsumura, K Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release, 2000, 65, 271– 284.
8. M.G. Harisinghani, J. Barentsz, P.F. Hahn, W.M. Deserno, S. Tabatabaei, C.H. van de Kaa, J. de la Rosette, R. Weissleder, Noninvasive detection of clinically occult lymph-node metastases in prostate cancer, New England Journal of Medicine, 2003, 348, 2491-2499.
9. R. Weissleder, M.J. Pittet, Imaging in the era of molecular oncology, Nature, 2008, 452, 580–589.
10. I. Safarik, Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides, 2004, BioMagnetic Research and Technology, 2, 7-19.
11. J. Fan, J. Lu, R. Xu, R. Jiang, Y. Gao, Use of water-dispersible Fe2O3 nanoparticles with narrow size distributions in isolating avidin, Journal of Colloid and Interface Science, 2003, 266, 215-218.
12. W.K. Hofmann, S. de Vos, M. Komor, D. IIoelzer, W. Wachsman, H.P. Koofller, Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow, Blood, 2002, 100, 3553-3560.
13. V.S. Kalambur, B. Han, B.E. Hammer, T.W. Shield, J.C. Bischof, In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology, 2005, 16, 1221–1233.
14. A. Jordan, P. Wust, H. Fahling, W. John, A. Hinz, R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids : physical evaluation of their potential for hyperthermia, International Journal of Hyperthermia, 1993, 9, 51-68.
15. A.H. Habib, C.L. Ondeck, P. Chaudhary, M.R. Bockstaller, M.E. Henry, Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. Journal of Applied Physics, 2008, 103, 07A307.
16. Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles, Chemistry of Materials, 1996, 8, 2209–2211
17. S.J. Park, S. Kim, S. Lee, Z. Khim, K. Char, T. Hyeon, Synthesis and magnetic studies of uniform iron nanorods and nanospheres, Journal of the American Chemical Society, 2000, 122, 8581-8582.
18. J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nature Materials, 2004, 3, 898-895..
19. E.V. Shevchenko, D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Colloidal synthesis and self-assembly of CoPt3 nanocrystals, Journal of the American Chemical Society, 2002, 124, 11480-11485.
20. S. Basak, D.R. Chen, P. Biswas, Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law, Chemical Engineering Science, 2007, 62, 1263-1268.
21. N. Munshi, T.K. De, A. Maitra, Size modulation of polymeric nanoparticles under controlled dynamics of microemulsion droplets. Journal of Colloid and Interface Science, 1997, 190, 387–391.
22. K. Kandori, M. Fukuoka, T. Ishikawa, Effects of citrate ions on the formation of ferric oxide hydroxide particles, Journal of Materials Science, 1991, 26, 3313-3319.
23. S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, W. Tan, Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants, Langmuir, 2001, 17, 2900–2906.
24. C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, 1993, 115, 8706-8715.
25. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X.Wang, G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles, Journal of the American Chemical Society, 2004, 126, 273-279.
26. N. R. Jana, Y. Chen, X. Peng, Size- and shape- controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach, Chemistry of Materials, 2004, 16, 3931-2935.
27. T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, Journal of the American Chemical Society, 2001, 123, 12798-12801.
28. S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 2000, 287, 1989-1992.
29. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical Reviews, 108, 2064–2110
30. H.S. Lee, E.H. Kim, H. Shao, B.K. Kwak, Synthesis of SPIO-chitosan microspheres for MRI-detectable embolotherapy, Journal of Magnetism and Magnetic Materials, 2005, 293, 102-105.
31. J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals, Nature Reviews Drug Discovery, 2003, 2, 214–221.
32. P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles, Elsevier, Amsterdam, Netherlands, 2006.
33. S.C. McBain, H.H.P. Yiu, A. El Haj, J. Dobson, Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection, Journal of Materials Chemistry, 2007, 2561–2565.
34. C. Albornoz, S.E. Jacobo, Preparation of a biocompatible magnetic film from an aqueous ferrofluid, Journal of Magnetism and Magnetic Materials, 2006, 305, 12-15.
35. W.J.M. Mulder, G.J. Strijkers, G.A.F. van Tilborg, A.W. Griffioen, K. Nicolay, Lipidbased nanoparticles for contrast-enhanced MRI and molecular imaging, NMR in Biomedicine, 2006, 19, 142–164.
36. F.M. Kievit, O. Veiseh, N. Bhattarai, C. Fang, J.W. Gunn, D. Lee, R.G. Ellenbogen, J.M.Olson, M. Zhang, PEI-PEG-Chitosan-Copolymer-Coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection, Advanced Functional Materials, 2009,19, 2244–2251.
37. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun, Dumbbell-like bifunctional Au−Fe3O4 nanoparticles, Nano Letters, 2005, 5, 379-382.
38. J. Lee, J. Yang, H. Ko, S.J. Oh, J.H. Son, K. Lee, S.W. Lee, H.G. Yoon, J.S. Suh, Y.M, Huh, S. Haam, Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous Therapy, Advanced functional materials, 2008, 18, 258-264.
39. W.K. Oh, H. Yoon, J. Jang, Size control of magnetic carbon nanoparticles for drug delivery, Biomaterials, 2010, 31, 1342-1348.
40. F.F. Hahn, D.D. Stark, J. Lewis, S. Saini, G. Elizondo, R. Weissleder, C.J. Fretz, J.T. Ferrucci, First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging, Radiology, 1990, 175, 695-700.
41. W. Stober, A. Fink, E.J. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, 1968, 26, 62-69.
42. M.D. Butterworth, S.A. Bell, S.P. Armes, A.W. Simpson, Synthesis and characterization of polypyrrole-magnetite-silica particles, Journal of Colloid and Interface Science, 1996, 183, 91-99.
43. A.H. Latham, and M.E. Williams, Controlling transport and chemical functionality of magnetic nanoparticles. Accounts of Chemical Research, 2007, 41, 411–20.
44. R. De Palma, S. Peeters, M.J. van Bael, H. Van den Rul, K. Bonroy, W. Laureyn, J. Mullens, G. Borghs, G. Maes, Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible, Chemistry of materials, 2007, 19, 1821-1831.
45. F. Dubois, B. Mahler, B. Dubertret, E. Doris, C. Mioskowski, A versatile strategy for quantum dot ligand exchange, Journal of American Chemical Society, 2007, 129, 482-483.
46. M.A. White, J.A. Johnson, J.T. Koberstein, N.J. Turro, Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry, Journal of American Chemical Society, 2006, 128, 11356-11357.
47. T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Radler, G. Natile, W.J. Parak, Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals, Nano Letters, 2004, 4, 703-707.
48. T. Zhang, J. Ge, Y. Hu, Y. Yin, A general approach for transferring hydrophobic nanocrystals into water, Nano Letters, 2007,7, 3203-3207.
49. K.M. Kamruzzaman Selim, Y.S. Ha, S.J. Kim, Y. Chang, T. Kim, G.H. Lee, I.K. Kang, Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes, Biomaterials, 2007, 28, 710-716.
50. W.J. Lin, T.D. Chen, C.W. Liu, J.L. Chen, F.H. Chang, Synthesis of lactobionic acid-grafted-pegylated-chitosan with enhanced HepG2 cells transfection, Carbohydrate polymers, 2011, 83, 898-904.
51. P.H. Weigel, J.H. Yik, Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors, Biochim Biophys Acta, 2002, 1572, 341–63
52. R. Gref, J. Rodrigues, P. Couvreur, Polysaccharides grafted with polyesters: novel amphiphilic copolymers for biomedical applications, Macromolecules, 2002, 35, 9861–9867.
53. J. Zhang, C. Li, Z.Y. Xue, H.W. Cheng, F.W. Huang, R.X. Zhuo, X.Z. Zhang, Fabrication of lactobionic-loaded chitosan microcapsules as potential drug carriers targeting the liver, Acta Biomaterialia, 2011, 7, 1665-1673.
54. W.J. Lin, T.D. Chen, C.W. Liu, Synthesis and characterization of lactobionic acid grafted pegylated chitosan and nanoparticle complex application, Polymer, 2009, 50, 4166-4174.
55. J.P. Celli, B.Q. Spring, I. Rizvi, C.L. Evans, K.S. Samkoe, S. Verma, B.W. Pogue, T. Hasan, Imaging and photodynamic therapy: mechanisms, monitoring, and optimization, Chemical Reviews, 2010, 110, 2795–2838.
56. P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H.Hu, D. Cui, Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy, Biomaterials, 2011, 32, 3447-3458.
57. 柯朝榮,以環糊精-磁性奈米粒子之熱效應與包覆抗癌藥capsaicin之探討。 國立成功大學化工系碩士論文,2010.
58. 洪碩延,具標靶性之環糊精包覆磁性奈米顆粒之鑑定與其熱效應及裝載辣椒鹼之探討。國立成功大學化工系碩士論文,2011.
59. S.S. Han, Y.S. Keum, H.J. Seo, K.S. Chun, S.S. Lee, Y.J. Surh, Capsaicin suppresses phorbol ester-induced activation of NF-kappaB/Rel and AP-1 transcription factors in mouse epidermis, Cancer letters, 2001, 164, 119-126.
校內:2027-06-01公開