簡易檢索 / 詳目顯示

研究生: 陳宛琳
Chen, Wan-Lin
論文名稱: 距離測度在群體決策與相似度之應用研究
The Application of Distance Measure on Group Decision-Making Problems and Similarity Measurement
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 55
中文關鍵詞: 相似測度群體決策語意變數距離測度
外文關鍵詞: Similarity measure, Group decision making, Linguistic variable, Distance measure
相關次數: 點閱:141下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在一般的定義下,距離為衡量物體遠近的工具,而從另外一個角度來看,可將點與點間或是圖形間的距離視為一種衡量相似度的工具,若距離越近,則表示彼此間的相似程度越高、差異越小,反之亦然。本研究主要為利用八個距離測度公式,分別運用於群體意見的整合與相似度的衡量兩大方面。在本研究的第一部份將結合α截集與距離測度的概念,提出新的整合群體意見模式,之後以共識值到各專家意見之左右側距離比值為評估指標,分別考慮模糊意見具權重及不考慮模糊意見具權重兩情況,利用兩組文獻數據,從欲研究的八個距離測度中,篩選出表現較好的距離測度公式。而後以共識值到各專家意見之左右側距離比值為指標,利用兩組既有文獻資料,將本研究所篩選出的距離測度公式與過去學者提出的群體決策方法做出比較。
      而本研究的第二部分則是提出一結合α截集與距離測度概念的衡量相似度模式,並利用21種具有代表性的模糊數組合,將本研究所提出的新方法與既有的相似測度做比較,研究結果證明本研究所提方法能夠真正解決這些現存方法所無法處理的狀況。

      The distance measures are usually used as the similarity indicators in the pattern recognition. The objective of this research is to investigate the feasibility of eight existing distance measures in the aggregation of group fuzzy decisions and in the similarity measurement of two fuzzy numbers. In the first part of this research, we apply the concepts of α-cuts in each distance measure, and determine an optimal group fuzzy consensus based on mathematical theorems, representing the aggregation of individual fuzzy opinions. The ratio of the left distance to the right distance between the group fuzzy consensus and all individual opinions is developed to evaluate the quality of group fuzzy consensus. Using two datasets from the existing study and considering both weighted and original individual fuzzy opinions, the quality of group fuzzy consensus from eight distance measures is compared based on the proposed ratio. The best distance measure is adopted to compare with the existing aggregation methods of group fuzzy decisions.
      In the second part, we also apply the concepts of α-cut to distance measure in measuring the degree of similarity between two generalized fuzzy numbers. The proposed method is demonstrated by comparing with the existing similarity measures using twenty-one sets of paired fuzzy numbers. The results show that the proposed similarity measure is better than the existing methods.

    摘要............................................i 英文摘要.......................................ii 誌謝..........................................iii 目錄...........................................iv 表目錄.........................................vi 圖目錄........................................vii 第一章 緒論.....................................1 1.1 研究動機....................................1 1.2 研究目的....................................2 1.3 研究方法與限制..............................2 1.4 研究流程....................................3 1.5 論文架構....................................4 第二章 文獻探討.................................5 2.1 模糊理論....................................5 2.2 距離測度相關文獻............................9 2.3 群體決策相關文獻...........................13 2.4 相似測度相關文獻...........................15 第三章 距離測度於群體決策與相似度之衡量........20 3.1 研究構想...................................20 3.2 距離測度於群體決策之應用...................24 3.3 距離測度於相似度之應用.....................33 第四章 數值分析................................38 4.1 群體意見整合應用分析.......................38 4.2 相似度衡量應用分析.........................43 第五章 研究成果與未來研究方向..................51 5.1 研究成果...................................51 5.2 未來研究方向...............................52 參考文獻.......................................53

    王小藩,多準則決策分析,滄海書局,民國94年。

    Chen, C. T., “Applying linguistic decision-making method to deal with service quality evaluation problems,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9, 103-114, 2001a.

    Chen, C. T., “A fuzzy approach to select the location of the distribution center,” Fuzzy sets and systems, 118, 65-73, 2001b.

    Chen, S. M., “New methods for subjective mental workload assessment and fuzzy risk analysis,” Cybernetics and Systems: An International Journal, 27, 449-472, 1996.

    Chen, S. J. and Chen, S. M., “Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers,” IEEE Transactions on Fuzzy Systems, 11, 45-56., 2003.

    Delgado, M., Herrera, F., Herrera-Viedma, E. and Martinez, L., “Combining numerical and linguistic information in group decision making,” Information Sciences, 107, 177-194, 1998.

    Deng, Y., Shi, W. K., Du, F. and Liu, Q., “A new similarity measure of generalized fuzzy numbers and its application to pattern recognition,” Pattern Recognition Letters, 25, 875-883, 2004.

    Dubois, D. and Prade, H., “Operations on fuzzy numbers,” International Journal of Systems Science, 9, 613-626, 1978.

    Ellis, D. G. and Fisher, B. A., Small group decision making, McGraw-Hill, N.Y, 1994.

    Fan, J. L., Ma, Y. L. and Xie, W. X., “On some properties of distance measures,” Fuzzy sets and systems, 117, 355-361, 2001.

    Gonzalez, A., Pons, O. and Vila, M. A., “Dealing with uncertainty and imprecision by means of fuzzy numbers,” International Journal of Approximate Reasoning, 21, 233-256, 1999.

    Herrera, F., Herrera-Viedma, E. and Verdegay, J. L., “Direct approach processes in group decision making using linguistic OWA operators,” Fuzzy sets and systems, 79, 175-190, 1996.

    Herrera, F., Martinez, L. and Sanchez, P. J., “Managing non-honogeneous information in group decision making,” European Journal of Operational Research, 166, 115-132, 2005.

    Hsieh, C. H. and Chen, S. H., “Similarity of generalized fuzzy number with graded mean representation,” Proceedings of the Eighth International Conference of Fuzzy Sets and Systems Association World Congress, 2, 899-902, 1999.

    Hsu, H. M. and Chen, C. T., “Aggregation of fuzzy opinions under group decision making,” Fuzzy sets and systems, 79, 279-285, 1996.

    Klir, G. J. and Folger, T. A., Fuzzy sets, Uncertainty, and information, Prentice Hall, Englewood Cliffs, N.J, 1988.

    Klir, G. J. and Yuan, B., Fuzzy sets and fuzzy logic theory and applications. Taiwan: Pearson Education Taiwan, 2002.

    Lee, H. S., “Optimal consensus of fuzzy opinions under group decision making environment,” Fuzzy sets and systems, 132, 303-315, 2002.

    Li, D. F. and Cheng, C. T., “New similarity measures of intuitionistic fuzzy sets and application to pattern recognition,” Pattern Recognition Letters, 23, 221-225, 2002.

    Liang, Z. Z. and Shi, P. F., “Similarity measures on intuitionistic fuzzy sets,” Pattern Recognition Letters, 24, 2687-2693, 2003.

    Ölçer, A. I. and Odabaşi, A. Y., “A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem,” European Journal of Operational Research, 166, 93-114, 2005.

    Perlibakas, V., “Distance measures for PCA-based face recognition,” Pattern Recognition Letters, 25, 711-724, 2004.

    Quan, Y. and Yang, J., “Modified kernel functions by geodesic distance,” EURASIP Journal on Applied Signal Processing, 16, 2515-2521, 2004.

    Saaty, T. L., The analytic hierarchy process, McGraw-Hill, N.Y, 1980.

    Sniezek, J. A. and Henry, R. A., “Accuracy and confidence in group judgment,” Organizational Behavior and Human Decision Process, 43, 1-28, 1989.

    Tong, R. M. and Bonissone, P. P., “A linguistic approach to decisionmaking with fuzzy sets,” IEEE Transactions on Systems, Man, and Cybernetics, 10, 716-723, 1980.

    Wang, R. C. and Chuu, S. J., “Group decision-making using a fuzzy linguistic approach for evaluating the flexibility in a manufacturing system,” European Journal of Operational Research, 154, 563-572, 2004.

    Williams, J. and Steele N., “Difference, distance and similarity as a basis for fuzzy decision support based on prototypical decision classes,” Fuzzy sets and systems, 131, 35-46, 2002.

    Wilson, D. R. and Martinez, T. R., “Improved heterogeneous distance functions,” Journal of Artificial Intelligence Research, 6, 1-34, 1997.

    Xu, Z., “A method based on linguistic aggregation operators for group decision making with linguistic preference relations,” Information Sciences, 166, 19-30, 2004.

    Zadeh, L. A., “Fuzzy sets,” Information Control, 8, 338-353, 1965.

    Zadeh, L. A., “The concept of linguistic variable and its application to approximate reasoning, Part 1,” Information Science, 8, 199-249, 1975.

    下載圖示 校內:2016-06-06公開
    校外:2021-06-06公開
    QR CODE