簡易檢索 / 詳目顯示

研究生: 張正揚
Chang, Wesley Jen-Yang
論文名稱: 對稱/非對稱多孔洞型聚苯咪唑於高溫質子交換膜燃料電池長期穩定性研究
A Comparative Study on Durability of Symmetrically and Asymmetrically Porous Polybenzimidazole Membranes for High Temperature Proton Exchange Membrane Fuel cells
指導教授: 許聯崇
Hsu, Lien-Chung Steve
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 45
中文關鍵詞: 高溫質子交換膜燃料電池孔洞性薄膜聚苯咪唑長時間穩定性測試
外文關鍵詞: porous membrane, polybenzimidazole, durability, high temperature proton exchange membrane fuel cell
相關次數: 點閱:131下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中製備出對稱/非對稱兩種不同孔洞型聚苯咪唑高分子薄膜應用於高溫質子交換膜燃料電池進行測試。使用的高分子為六氟化聚苯咪唑,並使用 dibutyl phthalate 和 1-ethyl-3-methylimidazoliumbis(trifluoro-methylsulfonyl)imide ([EMIM][TFSI]) 為孔洞劑,以軟模板的方式成功製備出對稱/非對稱兩種不同孔洞型聚苯咪唑高分子質子交換膜。多孔性結構成功幫助聚苯咪唑薄膜提升50 %磷酸摻雜量。然而,多孔性結構有可能會造成磷酸流失和燃料穿透等問題,造成燃料電池的效能以及耐用度大幅下降。為了克服這些缺點,本研究中製備出非對稱性孔洞薄膜。此非對稱性孔洞薄膜包含緻密層與孔洞層,希望藉由孔洞層提升磷酸的摻雜量的同時也藉由緻密層來解決磷酸流失和燃料穿透等問題。兩種多孔性薄膜皆進行機械強度、熱穩定性、抗氧化性、質子導電度等質子交換膜性質相關測試,藉由掃描式電子顯微鏡觀察多孔性薄膜的表面及斷面型態,紀錄孔洞大小以及分布。單電池測試方面,以開關測試 (150 °C下負載0.2 A/cm2 12小時後再停止負載並將溫度降至室溫) 進行單電池性能初步評估,之後再進行三十天的長時間穩定度測試 (150 °C下負載0.2 A/cm2 720小時)。測試結果對稱/非對稱兩種不同孔洞型聚苯咪唑高分子質子交換膜在單電池開關測試方面皆表現良好,最高功率密度可以達到600 mW/cm2以上。三十天的長時間穩定度測試中發現,非對稱性孔洞結構可以解決酸流失問題,相對於對稱性孔洞薄膜大幅提升了燃料電池的耐用度。

    In this work, two different types of porous polybenzimidazole (PBI) membranes, symmetrically and asymmetrically porous membranes, were successfully fabricated and tested for high temperature proton exchange membrane fuel cells (HT-PEMFCs). The hexafluoroisopropylidene containing PBI (6FPBI) was used and the symmetrically and asymmetrically porous membranes were prepared by soft-template method with two kinds of porogens; they were dibutyl phthalate and 1-ethyl-3-methylimidazoliumbis(trifluoro-methylsulfonyl)imide ([EMIM][TFSI]), respectively. The morphologies of the porous membranes were checked by SEM. The physicochemical properties required for HT-PEMFC such as doping level, proton conductivity, mechanical strength and oxidative stability have been studied. The porous structure successfully helps the PBI membranes to uptake more phosphoric acid and increase the proton conductivity about 50 %. However, the porous structure might cause the problems like acid leakage or fuel crossover. To overcome these problems, the asymmetrically porous structure were introduced. The startup/ shutdown tests (12 h on at 150 °C with 200 mA cm-2 and 12h off at room temperature) and long-term durability tests (720 h at 150 °C with 200 mA cm-2) were conducted. The maximum power density of symmetrically and asymmetrically porous PBI membranes was 624 and 616 mW cm-2 at 150 °C, respectively. In the long-term durability tests, the asymmetrically porous structure did significantly reduced the phosphoric acid loss and increased the durability of the fuel cell compared to the symmetrically porous structure.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii 1. Introduction 1 1.1. Research background 1 1.2. Research motivation 5 2. Literature review 6 2.1. Principle of proton exchange membrane fuel cells 6 2.2. Types of polybenzimidazole for HT-PEMFCs 8 2.3. Proton conductivity 10 2.4. Membranes fabrication 12 2.5. Porous polybenzimidazole membranes for HT-PEMFC 14 2.6. Fabrication of membrane electrode assemblies (MEAs) 15 3. Experiments 17 3.1. Materials 17 3.2. Synthesis of polybenzimidazole 17 3.3. Preparation of membranes 18 3.4. Phosphoric acid doping 19 3.5. Measurement and characterization 19 3.5.1. Nuclear magnetic resonance (NMR) 19 3.5.2. Fourier transform infrared spectroscopy (FTIR) 20 3.5.3. Field emission scanning electron microscope (FE-SEM) 21 3.5.4. Thermogravimetric analysis (TGA) 21 3.5.5. Tensile properties 21 3.5.6. Proton conductivity 21 3.5.7. Oxidative stability 22 3.5.8. Electrochemical impedance spectroscopy 22 3.6. Preparation of membrane electrode assemblies (MEAs) 24 3.7. Fuel cell test 25 3.8. Post analysis 26 4. Results and Discussion 27 4.1. Characterization 27 4.2. Phosphoric acid doping and proton conductivity 31 4.3. Oxidative stability 33 4.4. Fuel cell tests 34 4.4.1. Startup and shutdown tests 34 4.4.2. Long-term durability tests 38 4.5. Post analysis 39 5. Conclusions 40 6. References 42

    [1] Statistical Review of World Energy in 2014. British Petroleum; 2014.
    [2] Renewable Energy Systems. Fuel Cell Today; 2012.
    [3] Carter D, Wing J. The fuel cell industry review in 2013. 2013.
    [4] Costamagna P, Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects. J Power Sources. 2001;102:242-52.
    [5] Costamagna P, Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part II. Engineering, technology development and application aspects. J Power Sources. 2001;102:253-69.
    [6] Asensio JA, Sanchez EM, Gomez-Romero P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem Soc Rev. 2010;39:3210-39.
    [7] Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review. J Power Sources. 2013;231:264-78.
    [8] Li Q, He R, Jensen JO, Bjerrum NJ. PBI-Based Polymer Membranes for High Temperature Fuel Cells - Preparation, Characterization and Fuel Cell Demonstration. Fuel Cells. 2004;4:147-59.
    [9] Li QF, Jensen JO, Savinell RF, Bjerrum NJ. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci. 2009;34:449-77.
    [10] Lin HL, Hsieh YS, Chiu CW, Yu TL, Chen LC. Durability and stability test of proton exchange membrane fuel cells prepared from polybenzimidazole/poly(tetrafluoro ethylene) composite membrane. J Power Sources. 2009;193:170-4.
    [11] Qian GQ, Benicewicz BC. Synthesis and Characterization of High Molecular Weight Hexafluoroisopropylidene-Containing Polybenzimidazole for High-Temperature Polymer Electrolyte Membrane Fuel Cells. J Polym Sci Pol Chem. 2009;47:4064-73.
    [12] Qian GQ, Smith DW, Benicewicz BC. Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells. Polymer. 2009;50:3911-6.
    [13] Xiao LX, Zhang HF, Scanlon E, Ramanathan LS, Choe EW, Rogers D, et al. High-temperature polybenzimidazole fuel cell membranes via a sol-gel process. Chem Mater. 2005;17:5328-33.
    [14] Mecerreyes D, Grande H, Miguel O, Ochoteco E, Marcilla R, Cantero I. Porous polybenzimidazole membranes doped with phosphoric acid: Highly proton-conducting solid electrolytes. Chem Mater. 2004;16:604-7.
    [15] Weber J, Antonietti M, Thomas A. Mesoporous poly(benzimidazole) networks via solvent mediated templating of hard spheres. Macromolecules. 2007;40:1299-304.
    [16] Weber J, Kreuer KD, Maier J, Thomas A. Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts. Adv Mater. 2008;20:2595-2598.
    [17] Shen CH, Jheng LC, Hsu SLC, Wang JTW. Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells. J Mater Chem. 2011;21:15660-5.
    [18] Wang S, Zhao CJ, Ma WJ, Zhang G, Liu ZG, Ni J, et al. Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells. J Membrane Sci. 2012;411:54-63.
    [19] Jheng LC, Hsu SLC, Tsai TY, Chang WJY. A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. J Mater Chem A. 2014;2:4225-33.
    [20] Li J, Li XJ, Yu SC, Hao JK, Lu WT, Shao ZG, et al. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells. Energ Convers Manage. 2014;85:323-7.
    [21] Fuel cell. Wikipedia; 2015.
    [22] Services EG, Parsons I, Corporation SAI. Fuel Cell Handbook. Fifth Edition ed: EG&G Services Parsons, Inc. Science Applications Intl Corp; 2000.
    [23] Fuel Cells Part 1 – What is a Fuel Cell. Autolab Application Note.
    [24] Pu HT, Wang L, Pan HY, Wan DC. Synthesis and Characterization of Fluorine-Containing Polybenzimidazole for Proton Conducting Membranes in Fuel Cells. J Polym Sci Pol Chem. 2010;48:2115-22.
    [25] Chuang SW, Hsu SLC. Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications. J Polym Sci Pol Chem. 2006;44:4508-13.
    [26] Subianto S. Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells. Polym Int. 2014;63:1134-44.
    [27] Agmon N. The Grotthuss Mechanism. Chem Phys Lett. 1995;244:456-62.
    [28] Kreuer KD, Rabenau A, Weppner W. Vehicle Mechanism, a New Model for the Interpretation of the Conductivity of Fast Proton Conductors. Angew Chem Int Edit. 1982;21:208-9.
    [29] Xing BZ, Savadogo O. The effect of acid doping on the conductivity of polybenzimidazole (PBI). J New Mat Elect Syst. 1999;2:95-101.
    [30] Lobato J, Canizares P, Rodrigo MA, Linares JJ, Ubeda D, Pinar FJ. Study of the Catalytic Layer in Polybenzimidazole-based High Temperature PEMFC: Effect of Platinum Content on the Carbon Support. Fuel Cells. 2010;10:312-9.
    [31] Lobato J, Canizares P, Rodrigo MA, Linares JJ, Pinar FJ. Study of the influence of the amount of PBI-H3PO4 in the catalytic layer of a high temperature PEMFC. Int J Hydrogen Energ. 2010;35:1347-55.
    [32] Nuclear magnetic resonance. Wikipedia; 2015.
    [33] Wade LG. Organic Chemistry 6th Edition ed: Pearson Education; 2005.
    [34] Skoog DA, Holler FJ, Crouch SR. Principles of Instrumental Analysis sixth edition ed: Thomson Brooks Cole; 2007.
    [35] Infrared spectroscopy. Wikipedia2015.
    [36] Bending vibrations. ExpertsMind2015.
    [37] 趙中興. 燃料電池基礎: 全華圖書; 2008.
    [38] Li X, Qian G, Chen X, Benicewicz BC. Synthesis and Characterization of a New Fluorine-Containing Polybenzimidazole (PBI) for Proton-Conducting Membranes in Fuel Cells. Fuel Cells. 2013;13:832-42.
    [39] Fenton HJH. LXXIII.-Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions. 1894;65:899-910.
    [40] Lin HL, Chou YC, Yu TL, Lai SW. Poly(benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energ. 2012;37:383-92.
    [41] Han MM, Zhang G, Liu ZG, Wang SA, Li MY, Zhu J, et al. Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. J Mater Chem. 2011;21:2187-93.
    [42] Li H, Tang YH, Wang ZW, Shi Z, Wu SH, Song DT, et al. A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources. 2008;178:103-17.
    [43] Li Q. High temperature proton exchangemembranes for fuel cells: Technical University of Denmark; 2006.
    [44] Schmidt T. High-Temperature Polymer Electrolyte Fuel Cells: Durability Insights. In: Büchi F, Inaba M, Schmidt T, editors. Polymer Electrolyte Fuel Cell Durability: Springer New York; 2009. p. 199-221.
    [45] Schmidt TJ, Baurmeister J. Properties of high-temperature PEFC Celtec (R)-P 1000 MEAs in start/stop operation mode. J Power Sources. 2008;176:428-34.
    [46] Knights SD, Colbow KM, St-Pierre J, Wilkinson DP. Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources. 2004;127:127-34.

    無法下載圖示 校內:2020-08-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE