簡易檢索 / 詳目顯示

研究生: 陳之瑞
Chen, Chih-Rui
論文名稱: 在聲子晶體平板上之蘭姆波波傳分析與實驗量測
The analysis and experimental measurement of lamb wave propagating on phononic crystal plate
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 151
中文關鍵詞: 聲子晶體平板蘭姆波頻帶結構聲子能隙超聲波顯微鏡PVDF線聚焦換能器PZT陶瓷壓電片
外文關鍵詞: phononic crystal plate, Lamb wave, band structures, band gap, PVDF line-focus transducer, PZT transducer
相關次數: 點閱:110下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討在聲子晶體平板上之蘭姆波波傳分析與實驗量測,共設計三種不同結構聲子晶體平板,分別為圓洞型、圓盲孔型、橢圓盲孔型,首先分別對其進行有限元素模擬,計算頻帶結構與全波模擬穿透率分析,觀察聲子晶體的波傳特性,最後透過實驗量測進行比較與驗證。
    有限元素模擬部分,首先觀察均質平板之波傳特性,並藉由不同蘭姆波傳遞模態的位移場特徵對其進行分類,將三維模擬中不屬於蘭姆波模態之頻散曲線移除,以降低分析頻帶結構之難度。接著分別探討在圓洞型、圓盲孔型、橢圓盲孔型聲子晶體平板上之波傳行為,同樣將各頻帶結構做模態篩選與過濾後,再經由頻帶結構圖中觀察沒有頻散曲線通過的區域,該段區域即屬於聲子晶體之能隙,最後再透過全波模擬施打特定模態的蘭姆波並計算其穿透率,用於佐證頻帶結構圖中所觀察到的能隙現象。
    實驗部分共分為兩種實驗方法,第一種方法為超聲波顯微鏡量測實驗,使用PVDF壓電薄膜製作的探頭,針對圓盲孔與橢圓盲孔結構進行量測,再利用頻域量測法對實驗數據進行後處理後可將實驗結果轉換為傳遞波之頻帶結構圖。第二種方法為陶瓷壓電片超聲波換能器實驗,針對圓洞型結構進行量測,利用壓電片的幾何尺寸控制蘭姆波之中心作用頻率,再將作用頻率設計在聲子晶體能隙上進行實驗量測,觀察壓電訊號在能隙中衰減之現象。以上兩部分實驗皆會與有限元素模擬部分進行結果比較。

    In this study, we discuss the behaviors of Lamb wave propagating on the plate with periodic structures, which are so-called phononic crystal plates. Three kinds of phononic crystal structures are considered, which are named “round hole-type”, “round blind hole-type” and “elliptic blind hole-type”, respectively. We employ finite element method to investigate the special wave propagating phenomena of the structure, such as band gaps and changes of wave velocity, then we utilize two experimental methods, which are based on a PVDF line-focus transducer and PZT transducer, to investigate the samples with these periodic structures, and compare the experimental results with numerical results.

    In the part of numerical simulation, we first observe the wave propagation characteristics of homogeneous plates and classify it by the characteristics of the displacement field of different Lamb wave propagation modes. Then we discuss the band structures of the plates with three kinds of phononic crystals, the band structures show the absence of specific Lamb wave modes dispersion curves in some frequency ranges, namely the band gaps of Lamb wave, and the mechanisms that lead to band gaps are discussed.

    In the part of experimental measurement, we first use the experiment system with PVDF line-focus transducer to measure the “blind hole-type” phononic crystal structures and then utilize the other experiment system with PZT transducer to measure the “hole-type” phononic crystal structures. The decrease of wave velocity and band gaps can be found in measurement results, which are consistent with simulation results. Based on this research, we can build a complete process of the analysis of phononic crystal plates.

    摘要 I Abstract II 誌謝 XVII 目錄 XVIII 表目錄 XXII 圖目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 聲子晶體平板 2 1.2.2 壓電材料與壓電效應 3 1.2.3 超聲波顯微鏡量測技術 6 1.3 動機與目的 7 1.4 本文架構 8 第二章 研究基本理論、實驗量測原理及方法 10 2.1 蘭姆波之理論解及其特性 10 2.2 聲子晶體基本理論 13 2.2.1 倒晶格(Reciprocal lattice) 14 I. 倒晶格定義 14 II. 第一布里淵區(Brillouin zone) 16 III. 正方晶格 16 2.2.2 布洛赫定理(Bloch’s theorem) 17 2.2.3 聲子晶體平板的數值計算方法 18 2.3 實驗量測原理與方法及量測流程 21 2.3.1 實驗材料參數基本量測 21 I. 波速量測 21 II. 材料性質換算 21 2.3.2 超聲波顯微鏡量測實驗 22 I. 換能器之構成與製作 23 II. 換能器特性檢測 23 III. 量測原理與數據分析方法 25 IV. 量測流程 30 2.3.3 陶瓷壓電片超聲波換能器實驗 31 I. 換能器之構成與製作 31 II. 陶瓷壓電片尺寸特性 32 III. 量測原理與數據分析方法 35 IV. 量測流程 36 第三章 蘭姆波與聲子晶體平板之模擬分析 51 3.1 均質平板 52 3.1.1 材料參數 52 3.1.2 頻帶結構分析 52 3.1.3 模態判斷 54 3.2 圓洞型二維週期聲子晶體平板 57 3.2.1 頻帶結構分析 58 3.2.2 模態判斷 59 3.2.3 全波模擬穿透率計算 60 3.3 盲孔型二維聲子晶體平板 63 3.3.1 圓盲孔型聲子晶體平板 64 I. 頻帶結構分析與模態判斷 64 II. 全波模擬穿透率計算 66 3.3.2 橢圓盲孔型聲子晶體平板 68 I. 頻帶結構分析與模態判斷 68 II. 全波模擬穿透率計算 69 第四章 聲子晶體平板之實驗量測 98 4.1 超聲波顯微鏡量測實驗 98 4.1.1 量測試片準備 98 I. 聲子晶體結構尺寸設計考量 98 II. 量測夾持方式 100 III. 試件成品檢測 100 4.1.2 一般試件之量測結果 101 I. 塊材之量測結果 101 II. 均質平板之量測結果 102 4.1.3 圓盲孔型聲子晶體平板量測結果 103 I. 實驗量測結果 104 II. 修正模型模擬結果與實驗結果比對 105 4.1.4 橢圓盲孔型聲子晶體平板之量測結果 106 I. 實驗量測結果 106 II. 修正模型模擬結果與實驗結果比對 107 4.2 陶瓷壓電片式超聲波換能器實驗 108 4.2.1 量測試件準備 108 I. 聲子晶體結構尺寸設計考量 108 II. 陶瓷壓電片尺寸設計考量 110 III. 試件成品檢測 111 4.2.2 圓洞型聲子晶體平板之量測結果 113 I. 均質平板量測結果 114 II. 聲子晶體平板量測結果 115 第五章 結論與未來展望 144 5.1 結論 144 5.1.1 圓洞型聲子晶體平板之模擬分析 144 5.1.2 圓盲孔型聲子晶體平板之模擬分析 145 5.1.3 橢圓盲孔型聲子晶體平板之模擬分析 145 5.1.4 實驗量測 145 I. 超聲波顯微鏡量測實驗 145 II. 陶瓷壓電片超聲波換能器實驗 146 5.2 未來展望 147 第六章 參考文獻 148

    [1] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, vol. 58, no. 20, pp. 2059-2062, May 18 1987.
    [2] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites," Physical Review Letters, vol. 71, no. 13, pp. 2022-2025, Sep 27 1993.
    [3] J.-C. Hsu and T.-T. Wu, "Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates," Physical Review B, vol. 74, no. 14, 2006.
    [4] Z. Hou and B. M. Assouar, "Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method," Physics Letters A, vol. 372, no. 12, pp. 2091-2097, 2008.
    [5] B. Bonello, C. Charles, and F. Ganot, "Lamb waves in plates covered by a two-dimensional phononic film," Applied Physics Letters, vol. 90, no. 2, 2007.
    [6] S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt, and A. Adibi, "Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates," Applied Physics Letters, vol. 92, no. 22, 2008.
    [7] S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, "High-Q micromechanical resonators in a two-dimensional phononic crystal slab," Applied Physics Letters, vol. 94, no. 5, 2009.
    [8] T.-C. Wu, T.-T. Wu, and J.-C. Hsu, "Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface," Physical Review B, vol. 79, no. 10, 2009.
    [9] Y.-F. Wang, Y.-S. Wang, and X.-X. Su, "Large bandgaps of two-dimensional phononic crystals with cross-like holes," Journal of Applied Physics, vol. 110, no. 11, 2011.
    [10] M. J. Chiou, Y. C. Lin, T. Ono, M. Esashi, S. L. Yeh, and T. T. Wu, "Focusing and waveguiding of Lamb waves in micro-fabricated piezoelectric phononic plates," Ultrasonics, vol. 54, no. 7, pp. 1984-90, Sep 2014.
    [11] D. N. Alleyne and P. Cawley, "The interaction of Lamb waves with defects," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 39, no. 3, pp. 381-397, 1992.
    [12] D. N. Alleyne and P. Cawley, "Optimization of Lamb wave inspection techniques," Ndt & E International, vol. 25, no. 1, pp. 11-22, 1992.
    [13] S. Grondel, C. Paget, C. Delebarre, J. Assaad, and K. Levin, "Design of optimal configuration for generating A0 Lamb mode in a composite plate using piezoceramic transducers," The Journal of the Acoustical Society of America, vol. 112, no. 1, pp. 84-90, 2002.
    [14] V. Giurgiutiu, J. Bao, and W. Zhao, "Piezoelectric wafer active sensor embedded ultrasonics in beams and plates," Experimental Mechanics, vol. 43, no. 4, pp. 428-449, 2003.
    [15] S. B. Kim and H. Sohn, "Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials," Smart Materials and Structures, vol. 16, no. 6, pp. 2375-2387, 2007.
    [16] X. Liu, Z. Jiang, and L. Ji, "Investigation on the design of piezoelectric actuator/sensor for damage detection in beam with Lamb waves," Experimental Mechanics, vol. 53, no. 3, pp. 485-492, 2013.
    [17] D. Xiang, N. Hsu, and G. Blessing, "The design, construction and application of a large aperture lens-less line-focus PVDF transducer," Ultrasonics, vol. 34, no. 6, pp. 641-647, 1996.
    [18] D. Xiang, N. Hsu, and G. Blessing, "Materials characterization by a time-resolved and polarization-sensitive ultrasonic technique," in Review of Progress in Quantitative Nondestructive Evaluation: Springer, 1996, pp. 1431-1438.
    [19] C.-H. Yang, "Characterization of piezoelectrics using line-focus transducer," in Review of Progress in Quantitative Nondestructive Evaluation, ed: Springer, 1998, pp. 177-184 1998.
    [20] Y.-C. Lee and S.-P. Ko, "Measuring dispersion curves of acoustic waves using PVDF line-focus transducers," NDT & E International, vol. 34, no. 3, pp. 191-197, 2001.
    [21] Y.-C. Lee and S.-W. Cheng, "Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 3, pp. 830-837, 2001.
    [22] Y.-C. Lee, "Measurements of multimode leaky lamb waves propagating in metal sheets," Japanese Journal of Applied Physics, vol. 40, no. 1R, p. 359, 2001.
    [23] 安和, "實驗觀測蘭姆波在聲子晶體板上的能隙帶," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2012.
    [24] J. D. Achenbach, Wave propagation in elastic solids, 1973.
    [25] B. Graczykowski, M. Sledzinska, F. Alzina, J. Gomis-Bresco, J. S. Reparaz, M. R. Wagner, et al., "Phonon dispersion in hypersonic two-dimensional phononic crystal membranes," Physical Review B, vol. 91, 2015.
    [26] F.-L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C.-C. Chen, and V. Laude, "Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals," Journal of Applied Physics, vol. 101, p. 044903, 2007.
    [27] F.-C. Hsu, J.-C. Hsu, T.-C. Huang, C.-H. Wang, and P. Chang, "Design of lossless anchors for microacoustic-wave resonators utilizing phononic crystal strips," Applied Physics Letters, vol. 98, p. 143505, 2011.
    [28] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, "Complete band gaps in two-dimensional phononic crystal slabs," Physical Review. E, Statistical Nonlinear, and Soft Matter Physics, vol. 74, p. 046610, Oct 2006.
    [29] T.-T. Wu, Y.-T. Chen, J.-H. Sun, S.-C. S. Lin, and T. J. Huang, "Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate," Applied Physics Letters, vol. 98, p. 171911, 2011.

    下載圖示 校內:2023-02-06公開
    校外:2023-02-06公開
    QR CODE