簡易檢索 / 詳目顯示

研究生: 張良森
Chang, Liang-Sun
論文名稱: 改變激發光強度對兆赫輻射飽和機制之研究
Studies of the Saturation Mechanism in Terahertz Radiation by Varying Pump Beam Intensity
指導教授: 黃正雄
Hwang, Jenn-Shyong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 64
中文關鍵詞: 動量鬆弛時間飽和臨界電場兆赫輻射
外文關鍵詞: critical electric field, momentum relaxation time, saturation, terahertz radiation
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 兆赫輻射(THz)為頻率介於0.1THz到10THz之間的電磁波。在本論文中,我們利用光電導模式(photoconductive mode)與自由空間電光取樣(FSEOS)的方法來產生與偵測兆赫輻射。首先利用改變激發光強度之方法,研究在InAlAs SIN+結構的樣品中,其臨界電場、樣品內存能量及光吸收飽和(optical absorption saturation)極限對於兆赫輻射效益之關係。並以不同兆赫輻射機制的樣品(如InAlAs SIN+、InAlAs SIP+及InAs),研究在高激發光強度下,導致兆赫輻射減弱之原因。最後針對共軛高分子材料(DB-PPV)導致N型砷化鎵晶圓的兆赫輻射訊號增強的現象做一探討。

    The terahertz (THz) radiation is the electromagnetic wave with frequency between 0.1THz to 10THz. In this thesis, we employ the photoconductive mode and the free-space electro-optical sampling to generate and detect the terahertz radiations. Terahertz radiation from InAlAs SIN+ and InAlAs SIP+ hetrostructures and InAs wafer are measured at different pump power. The critical electric field, stored energy and optical absorption saturation in the emitters have played important roles in the amplitude of terahertz radiation. The decrease of terahertz radiation under the high pump power involves various radiation mechanisms. Finally, the enhancement of terahertz radiation by conjugate polymers (DB-PPV) deposited on n-doped GaAs wafer is observed and discussed.

    目錄 第一章 緒論......................................................1 第二章 兆赫輻射產生機制及實驗系統................................4 第2-1節 兆赫輻射產生機制.....................................5 2-1-1 光電導模式......................................5 2-1-2 光整流模式.....................................10 第2-2節 兆赫輻射實驗裝置....................................13 第三章 改變激發光強度研究兆赫輻射之飽和現象....................27 第3-1節 實驗樣品........................................27 第3-2節 內存能量、臨界電場、光吸收飽和效應與兆赫輻射之關 係..............................................28 第3-3節 在高強度激發光下導致兆赫輻射減弱之探討..........33 第四章 共軛高分子材料(DB-PPV)對於兆赫輻射增強之研究.............49 第五章 總結.....................................................60 參考文獻........................................................62

    參考文獻
    [1] X. C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M.
    Weiner, Appl. Phys. Lett., 62, 2003, 1993
    [2] J. Feldmann et al. Phys. Rev. B46, 7252,1992
    [3]B.B.Hu and M.C.Nuss,”imaging with terahertz waves.” Opt.Lett, 20(16):1716- 1718.Aug.1995
    [4] D.M. Mittleman, S. Hunsche, L.Boivin, and M. C. Nuss,”T-ray
    tomography" Opt. Lett,22(12):904-906,Jun.1997
    [5] L. Duvillaret, F. Garet, and J. Coutaz, “Highly precise determination of
    both optical constants and sample thickness in terahertz time-domain
    spectroscopy.” Appl.Opt., 38(2):409-415,Jun
    [6] D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and
    M.Koch, “Recent advances in terahertz imaging” Appl. Phys. B, (68)6:
    1085-1094,Jun. 1999.
    [7] D.M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C.
    Nuss, “Gas sensing using terahertz time-domain spectroscopy.”
    Appl. Phys. B, 67(3):379-390, Sep. 1998.
    [8] L. Xu, X. C. Zhang, D. H. Auston, Appl. Phys. Lett. 59, 3357 (1991).
    [9] X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett.
    56, 1011 (1990).
    [10] S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J.
    Levi, Phys. Rev. Lett. 68, 102 (1992)
    [11] B. B. Hu et al. Phys. Rev. Lett. 67, 2709, 1991
    [12] J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, and S. R.
    Keiding, Appl. Phys. Lett. 62(11)
    [13] R. Kersting, K. Unterrainer, G. Strasser, E. Gornik and H. F. Kauffmann,
    Phys. Rev. Lett. 79, 3038(1997)
    [14] X.-C. Zhang and D.H. Asuton , J. Appl. Phys. 71, 326(1992)
    [15] P. Gu, M. Tani, S. Kono, and K. Sakai, in 8th International Conference on
    Terahertz Electronics ~ VDE Verlag, Berlin-Offenbach, pp. 63(2000)
    [16] S. Kono, P. Gu, M. Tani and K. Sakai, Appl. Phys. B 71, 901(2000)
    [17] X.-C. Zhang and D. H. Auston, J. Appl. Phys. 71, 326(1992)
    [18] T. Dekorsy, T. Pfeifer, W. Ku¨tt and H. Kurz, Phys. Rev. B 47, 3842(1993)
    [19] J. N. Heyman, N. Coates and A. Reinhardt, Appl. Phys. Lett. 83, 5476(2003)
    [20] Y. R. Shen, The Principles of Nonlinear Optic, Wiley-Interscience
    Publication, New York, 1984
    [21] Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 2523, 1995
    [22] P. C. M. Planken, H. K. Nienhuys, H. J. Baker and T. Wenckebach, J. Opt.
    Soc,1011 (1990)
    [23] J. S. Hwang, W. Y. Chou, and S. L. Tyan, Appl. Phys. Lett. 67(16)
    [24] J. S. Hwang, W. C. Hwang, Z. P. Yang, and G. S. Chang, Appl. Phys. Lett.
    75(16)
    [25] Weijan Sha, June-Koo Rhee, Quantum Electronic, Vol 28, No. 10
    [26] J. I. Pankove, Optical Processes in Semiconductor(Dover, New York, 1971)
    [27] S.A. Lyon, J. Lumin. 35,121(1986)
    [28] B. R. Nag, Theory of Electrical Transport in semiconductors (Pergamon,
    New York, 1972)
    [29] K. Seeger, in Semiconductors Physics (springer, New York, 1988), Vol.40.
    [30] Jeff F. Young and H. M. van Driel, Phys. Rev. B 26, 2147 (1982)
    [31] J. G. Gay, Phys.Rev. B 4, 2567 (1971)
    [32] J. Shah, R. F. Leheny, and W. Wiegmann, Phys. Rev. B 16,1577 (1977)
    [33] D. H. Auston, S. McAfee, c. v. Shank, E. P. Ippen, and O. Teschke, Solid-
    State Electron. 21,147 (1978)
    [34] C. V. Shank, D. H. Auston, E. P. Ippen, and O. Teschke, Solid-State
    Electron. 25, 257 (1978)
    [35] W. Z. LIN, L. G. Fujimoto, E. P. Ippen, and R. A. Logan, Appl. Phys.
    Lett. 50, 124 (1987)
    [36] C. Weiss, R. Wallenstein, and R. Beigang, APL.Vol 77, p. 4160
    [37] J. Darmo, G. Strasser, T. Muller, R. Bratschitsch, and K. Unterrainer,
    APL.Vol 81, p. 871
    [38] Alexander M. Sinyukov, Megan R.Leahy, and L. Michael Hayden, APL.Vol 85,
    p. 5827
    [39] M. Nakajima, Y. Oda, and T. Suemoto, APL.Vol 85, p. 2694

    下載圖示 校內:2007-07-05公開
    校外:2007-07-05公開
    QR CODE