簡易檢索 / 詳目顯示

研究生: 朱鴻鎧
Chu, Hung-Kai
論文名稱: 以液相成長三氧化二鋁研製增強型氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體
Enhancement-Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors with Liquid Phase Deposited Aluminum Oxide
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 97
中文關鍵詞: 氮化鋁鎵/氮化鎵高電子遷移率電晶體閘極掘入鈍化層液相沉積法三氧化二鋁
外文關鍵詞: AlGaN/GaN, high electron mobility transistor, gate recess, passivation, liquid-phase deposition, Al2O3
相關次數: 點閱:141下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體,載子產生的機制是由氮化鋁鎵/氮化鎵的異質接面之間的晶格不匹配而產生高濃度的二維電子氣,因此元件多為空乏型電晶體。空乏型電晶體有諸多缺點,常開的狀態使得元件有額外的耗能,電路設計也更加複雜。本研究成功利用閘極掘入技術,將閘極下方主動層蝕刻至較薄的厚度,進而減少二維電子氣的濃度,達到臨界電壓偏移至正的區域;另外,減少主動層的厚度也能增加閘極對通到的控制能力。為了降低元件閘極漏電流以及提升三端崩潰電壓的特性,我們以液相成長三氧化二鋁薄膜作為我們的閘極介電層及鈍化層。
    我們以液相成長三氧化二鋁以及閘極掘入技術完成增強型高電子遷移率電晶體。元件臨界電壓成功提升至0.67 V,最大電流密度達到472 mA/mm,最大轉換電導值達到155 mS/mm,次臨界擺幅與電流開關比為142 mV/dec與1.33×109,閘極漏電流有效降低至2.87 × 10-6 mA/mm,三端崩潰電壓提升至186 V。

    The high sheet-carrier concentration in AlGaN/GaN high-electron-mobility transistors (HEMTs) is attributed to the lattice mismatch in the AlGaN/GaN structure interface. Therefore, HEMTs are often operated in depletion mode (D-mode, normally activated). However, D-mode operation presents many disadvantages, such as additional power consumption and complex circuit design. In this work, we used the gate-recess technique to reduce the thickness of the barrier layer and shift the threshold voltage values from negative to positive. The reduction of the barrier layer thickness can promote the controllability of the gate. Liquid-phase-deposited Al2O3 was used as gate dielectric and passivation layers to reduce the gate leakage current and increase the off-state breakdown voltage.
    Enhancement-mode (E-mode) metal–oxide–semiconductor HEMTs (MOSHEMTs) were obtained by LPD-Al2O3 and gate-recess techniques. The E-mode MOSHEMTs exhibited a threshold voltage that shifted to 0.67 V, with maximum drain current of 472 mA/mm and maximum transconductance of 155 mS/mm. In addition, the subthreshold swing is 142 mV/dec, the on/off ratio is 1.33×109, and the gate leakage current was decreased to 2.87×10−6 mA/mm, whereas the breakdown voltage was increased to 186 V.

    中文摘要 I Abstract III 誌謝 V List of figures X List of tables XII Chapter 1 Introduction XII 1.1 Background 1 1.2 Motivation 4 1.3 Organization 7 Chapter 2 AlGaN/GaN Heterostructure 8 2.1 Lattice Structure 8 2.2 Spontaneous polarization effect 10 2.3 Piezoelectric polarization effect 13 2.4 Two-dimensional electron gas density 15 2.5 Modeling of AlGaN/GaN HEMTs 18 2.5.1 Drain current model 18 2.5.2 Simulation results 22 Chapter 3 Experiments and Device Fabrication 28 3.1 Gate-recess process 28 3.1.1 Wet etching & mechanism 28 3.1.2 Dry etching & mechanism 30 3.1.3 Etching parameter 33 3.2 Liquid-phase deposited Al2O3 37 3.2.1 Properties of Al2O3 37 3.2.2 LPD system and experiment 39 3.3 Experimental equipment 43 3.3.1 Spin coater 43 3.3.2 Mask aligner 43 3.3.3 ICP etcher 44 3.3.4 E-gun evaporator and Sputter 45 3.3.5 RTA system 45 3.3.6 LPD system 46 3.3.7 Semiconductor parameter analyzer 47 3.4 Device fabrication 47 3.4.1 Mesa isolation 48 3.4.2 Source/Drain formation 49 3.4.3 Gate-recess etching 50 3.4.4 Al2O3 gate dielectric deposition 51 3.4.5 Gate formation 52 3.4.6 Al2O3 passivation layer deposition 52 Chapter 4 Results and Discussion 56 4.1 Properties of liquid-phase deposited Al2O3 56 4.1.1 XPS measurement 56 4.1.2 The surface analysis of Al2O3 58 4.1.3 TEM image 60 4.2 MOSHEMTs with and without passivation performance 61 4.2.1 Saturation drain current 61 4.2.2 Subthreshold swing and on-off ratio 63 4.3.4 Gate Leakage Current 64 4.3 E-mode MOSHEMTs performance 66 4.3.1 Saturation drain current 66 4.3.2 Transfer characteristics and transconductance 68 4.3.3 Subthreshold swing and on-off ratio 72 4.3.4 Gate Leakage Current 74 4.3.5 Off-state breakdown voltage 76 4.3.6 Pulse I-V characteristics 78 4.3.7 C-V measurement 80 4.3.8 Cutoff Frequency & Maximum Oscillation Frequency 82 4.3.9 Flicker Noise 83 4.3.10 Power-added efficiency & saturated output power 84 Chapter 5 Conclusion 86 Chapter 6 Future Work 90 References 91

    [1] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-High Power Density AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 586-590, Mar. 2001.
    [2] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-Power Microwave GaN/AlGaN HEMT’s on Semi-Insulating Silicon Carbide Substrates,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 161-163, Apr. 1999.
    [3] L. F. Eastman, and U.K. Mishra, “The Toughest Transistor Yet [GaN transistors],” IEEE SPECTRUM, vol. 39, pp. 28-33, May 2002.
    [4] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–Nitrides: Growth, Characterization, and Properties,” J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, Feb. 2000.
    [5] D. S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, “300-GHz InAlN/GaN HEMTs With InGaN Back Barrier,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1525-1527, Nov. 2011.
    [6] R. Wang, P. Saunier, X. Xing, C. Lian, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, “Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance,” IEEE Electron Device Lett. , vol. 31, no. 12, pp. 1383-1385, Dec. 2010.
    [7] D. W. Chou, K. W. Lee, J. J. Huang, H. R. Wu, Y. H. Wang, M. P. Houng, S. J. Chang and Y. K. Su, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field-Effect Transistor Based on a Liquid Phase Deposited Oxide,” Jpn. J. Appl. Phys. vol. 41, pp. 748-750, Jul. 2002.
    [8] R. K. Tyagi, A. Ahlawat, M. Pandey and S. Pandey, “An analytical two-dimensional model for AlGaN/GaN HEMT with polarization effects for high power applications,” Microelectron. J., vol. 38, pp. 877-883, 2007.
    [9] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, “High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment,” IEEE Electron Device Lett. , vol. 26, no. 7, pp. 435-437 Jul. 2005.
    [10] W. B. Lanford, T. Tanaka, Y. Otoki and I. Adesida, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” Electronics Letters, vol. 41, no. 7, pp. 449-450, Mar. 2005.
    [11] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, “Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate,” IEEE Electron Device Lett., vol. 31, no. 2, pp. 111-113, Feb. 2010.
    [12] L. Y. Su, F. Lee, and J. J. Huang, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 160-165, Feb. 2014.
    [13] A. B. Chen and A. Sher, Semiconductor Alloys: Physics and Materials Engineering, Springer US, 1995, ch.1.1.
    [14] M. D. Joesten, J. L. Hogg and M. E. Castellion, The World of Chemistry, Cengage Learning, 2006, ch.5.2.
    [15] K. Hirama, H. Takayanagi, S. Yamauchi, J. H. Yang, H. Kawarada, and H. Umezawa, “Spontaneous polarization model for surface orientation dependence of diamond hole accumulation layer and its transistor performance,” Appl. Phys. Lett., vol. 92, 112107, 2008.
    [16] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, pp. 10024-11027, Oct. 1997.
    [17] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, 15 Mar. 1999.
    [18] H. X. Guang, Z. D. Gang, J. D. Sheng, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,” Chinese Physics B, vol. 24, no. 6, 067301, 2015.
    [19] C. T. Sah, “Characteristics of the metal-oxide-semiconductor transistors,” IEEE Trans. Electron Devices, vol. 11, no.7, pp. 324-345, Jul. 1964.
    [20] W. Fikry, G. Ghibaudo, H. Haddara, S. Cristoloveanu, and M. Dutoit, “Method for extracting deep submicrometer MOSFET parameters,” Electron Lett., vol. 31, no. 9, pp. 762-764, Apr. 1995.
    [21] M. Köehler, I. f. Chemie und Biotechnik, Isotropic Etching, Springer US, 2014.
    [22] 莊達人, VLSI製造技術, 6thed, 新北市五股區:高立, 民95.
    [23] W. K. Wang, P. C. Lin, C. H. Lin, C. K. Lin, Y. J. Chan, G. T. Chen, and J. I. Chyi, “Performance Enhancement by Using the n+-GaN Cap Layer and Gate Recess Technology on the AlGaN–GaN HEMT Fabrication,” IEEE Electron Device Lett. , vol. 26, no. 1, pp. 5-7, Jan. 2005.
    [24] H. R. Wu, K. W. Lee, T. B. Nian, D. W. Chou, J. J. H. Wu, Y.H. Wang, M. P. Houng, P. W. Sze, Y. K. Su, S. J. Chang, C. H. Ho, C. I. Chiang, Y. T. Chern, F. S. Juang, T. C. Wen, W. I. Lee and J. I. Chyi, “Liquid phase deposited SiO2 on GaN,” Mater. Chem. Phys., vol. 80, no. 1, pp. 329-333, Apr. 2003
    [25] C. J. Huang, Z. S. Ya, J. H. Horng, M. P. Houng and Y. H. Wang, “GaAs Metal–Oxide–Semiconductor Field Effect Transistors Fabricated with Low-Temperature Liquid-Phase-Deposited SiO2,” Jpn. J. Appl. Phys., vol. 41, part 1, no. 9, pp. 5561-5562, Sep. 2002
    [26] J. J. Huang, P. W. Sze, S. K. Lin, W. C. Lai, Y. H. Wang and M. P. Houng, “AlGaN/GaN MOSHFET with a SiO2 Gate by Liquid Phase Deposition,” Phys. Scr., vol. T114, pp. 94-96, 2004.
    [27] T. Y. Wu, P. W. Sze, J. J. Huang, W. C. Chien, S. K. Lin C. C. Hu, M. J. Tsai, C. J. Wu, and Y. H. Wang, “Liquid-Phase Deposited TiO2 Thin Films on GaN,” in Proc. Electron Devices and Solid-State Circuits, 2007. EDSSC 2007, Tainan. Taiwan, 20-22 Dec. 2007, pp. 649-652.
    [28] T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang. W. C. Chien, C. C. Hu, M. J. Tsai, Y. H. Wang, “AlGaN/GaN MOSHEMTs with Liquid-Phase-Deposited TiO2 as Gate Dielectric,”IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2911-2916, Dec. 2009.
    [29] Y. Chang, Y. Lee, Y. Chiu, T. Lin, S. Wu, H. Chiu, J. Kwo, Y. Wang and M. Hong, "MBE grown high k dielectrics Ga2O3(Gd2O3) on GaN," Cryst. Growth, vol. 301, pp. 390-393, 2007.
    [30] C. Liu, E. F. Chor and L. S. Tan, “Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-k dielectric for surface passivation and gate oxide,” Semicond. Sci. Technol., vol. 22, no. 5, pp. 522-527, Mar. 2007.
    [31] Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, M. Hong, Y. N. Chiu, J. Kwo and Y. H. Wang, “Structural and electrical characteristics of atomic layer deposited high κ HfO2 on GaN,” Appl. Phys. Lett., vol. 90, no. 23, pp. 232904, 2007.
    [32] H. C. Chiu, C. W. Lin, C. H. Chen, C. W. Yang, C. K. Lin, J. S. Fu, L. B. Chang, R. M. Lin, and K. P. Hsueh, “Low Hysteresis Dispersion La2O3 AlGaN/GaN MOS-HEMTs,” J. Electrochem. Soc., vol. 157, no. 2, pp.160-164, 2010.
    [33] J. Kuzmik, G. Pozzovivo, S. Abermann, J. F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, E. Bertagnolli, G. Strasser, and D. Pogany, “Technology and Performance of InAlN/AlN/GaN HEMTs With Gate Insulation and Current Collapse Suppression Using ZrO2 or HfO2,” IEEE Trans. Electron Devices, vol. 55, no. 3, pp. 937-941, Mar. 2008.
    [34] Y. Dora, S. Han, D. Klenov, P. J. Hansen, K. S. No, U. K. Mishra, S. Stemmer and J. S. Speck, “ZrO2 gate dielectrics produced by ultraviolet ozone oxidation for GaN and AlGaN/GaN transistors,” J. Vac. Sci. Technol. B, vol. 24, no. 2, pp. 575-581, Mar/Apr 2006.
    [35] S. Basu, P. K. Singh, P. W. Sze and Y. H. Wang, “AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor with Liquid Phase Deposited Al2O3 as Gate Dielectric,” J. Electrochem. Soc., vol. 157 no. 10, pp. 947-951, 2010.
    [36] Y. Hijikata, Physics and Technology of Silicon Carbide Devices, InTech, 2013, ch.8.
    [37] S. Basu, P. K. Singh, J. J. Huang and Y. H. Wang, “Liquid-Phase Deposition of Al2O3 Thin Films on GaN,” J. Electrochem. Soc., vol. 154, no.12, pp. 1041-1046, 2007.
    [38] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, no. 8, pp. 2013-2016, 1988.
    [39] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical Characteristics of Highly Reliable Ultrathin Hafnium Oxide Gate Dielectric,” IEEE Electron Device Lett., vol. 21, no. 41, pp. 181-183, Apr. 2000.
    [40] P. D. Ye, B. Yang, K. K. Ng and J. Bude, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett. vol. 86, pp. 063501, 2005.
    [41] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor,” IEEE Electron Device Lett., vol. 21, no. 2, pp.63-65 Feb. 2000.
    [42] P. J. Hansen, V. Vaithyanathan, Y. Wu, T. Mates, S. Heikman, U. K. Mishra, R. A. York, D. G. Schlom and J. S. Speck, “Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN,” J. Vac. Sci. Technol. B, vol. 23, no. 2, pp. 499-506, 2005.
    [43] B. Lee, S. Y. Park, H. C. Kim, K. Cho, E. M. Vogel, M. J. Kim, R. M. Wallace, and J. Kim, “Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphenebased nanoelectronics,” Appl. Phys. Lett., vol. 92, pp. 203102, 2008.
    [44] E. J. Miller, X. Z. Dang and E. T. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors,” J. Appl. Phys., vol. 88, pp. 5951-5958, Nov. 2000.
    [45] E. D. Özben, Carrier mobility in advanced channel materials using alternative gate dielectrics, Forschungszentrum Jülich, 2014, ch 3.3.
    [46] Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370-1372, Nov. 2013.
    [47] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “A Simple Gate-Dielectric Fabrication Process for AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 997-999, Jul. 2012.
    [48] K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, “Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 192-194, Mar. 2010.

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE