簡易檢索 / 詳目顯示

研究生: 蔡明志
Tsai, Ming-Jhih
論文名稱: 含相乘性跳動之幾何布朗運動 與衍生性商品定價之應用
Geometric Brownian Motion with multiplicative Jumps and its application to Derivatives Evaluation
指導教授: 黃銘欽
Huang, Min-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 43
中文關鍵詞: 幾何布朗運動最大概位數跳動
外文關鍵詞: Maximun Likeihood Method, jump, Geometric Brownian Motion
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研究幾何布朗運動下含相乘性跳動的模型。本文在Poisson 過程下,以反覆程序檢測跳動。最大概似法被用來估計跳動參數λ與跳動大小。反覆程序原理以Matlab 程式語言加以撰寫。由台灣實證研究得到Black-Scholes 理論值,市場價格與模擬價格。GBM加入跳動所得到的選擇權價格與Black-Scholes 理論值是有差異的。

     The purpose of this study was to examine the model of geometric Brownian motion with multiplicative jumps. An iterative procedure was proposed to detect the jumps which follow a Poisson process with rate of intensityλ. The maximum likelihood method was used to estimate the parameterλ and the jump size. The algorithm of this iterative procedure was implemented in Matlab. The theoretical Black-Scholes, the market, and the simulated option prices were obtained through the investigation of a Taiwanese empirical study. The inclusion of the jump in the GBM resulted in option prices different from the Black-Scholes prices.

    表目錄 Ⅲ 圖目錄 Ⅳ 壹、前言 1 1.1 研究背景 1 1.2 研究目的 3 貳、選擇權與定價公式 4 2.1 選擇權 4 2.1.1 選擇權的發展 4 2.1.2 選擇權價格與股價的關係 5 2.2 價格變動與隨機過程 6 2.2.1 馬可夫過程 7 2.2.2 布朗運動 8 2.2.3 幾何布朗運動 10 2.3 選擇權B-S公式 11 2.3.1 Black-Scholes 公式的推導 12 參、建立幾何布朗運動下跳動的模型 24 3.1 幾何布朗運動下會跳動的模型 24 3.2 跳動模式建構 25 3.2.1 模式的建立 26 3.3 參數估計 28 3.4 計算超出跳動門檻的機率 30 肆、實證分析與結果 32 伍、討論與結論 36 參考文獻 37 附錄 39

    Bachelier, L.,1900, “Théorie de la Spéculation” Annales de l'Ecole Normale
    Supérieure, 17 , 21-86.
    Bailie, R. T., and R. P. DeGennaro, 1990, “Stock Returns and Volatility”
    Journal of Financial and Quantitative Analysis, 25, 203-214.
    Bates, David, 1996, “Jumps and Stochastic Volatility:Exchange Rate Processes
    Implicit in Deutschemark options” Review of Financial Studies, 9, 69-108.
    Black, F. and Scholes, M., 1973, “The Pricing of Options and Corporate
    Liabilities” Journal of Political Economy 81, 637-59.
    Bollerslev, T., 1986, “Generalized Autoregressive Conditional
    Heteroscedasticity” Journal of Econometrics, 31, 307-327.
    Chiras, D., and S.Manaster, 1978, “The Information Content of Option Prices
    and a Test of Market Efficiency” Journal of Financial Economics, 6,
    September, 213-234.
    Engle, R. F., 1982, “Autoregressive Conditional Heteroscedasticity with
    Estimates of the Variance of United kingdom Inflation” Econometrica, 50, 987-
    1007.
    Hamao, Y. R., W. Masculis, and V. Ng, 1990, “Correlation in Price Changes and
    Volatility across International Stock Markets” Review of Financial Studies,
    3, 281- 308.
    Hull, J., 2003, “Options, Futures, and Other Derivatives” 5th ed, Upper-
    Saddle River, New-Jersey, Prentice-Hall.
    Hull, J., 2002, “Fundamentals of Futures and Options Markets” 4th ed, Upper-
    Saddle River, New-Jersey, Prentice-Hall.
    Ito, K., 1951, “On Stochastic Differential Equations” Memoirs, American
    Mathematical Society, 4, 1-51.
    Kou, S. G., and H. Wang, 2004, “Option Pricing Under a Double Exponential Jump-
    Diffusion Model” Management Science, 50, 9, 1178-1192.
    Lauterbach, B. and P. Schultz, 1990, “Pricing Warrants:An Empirical Study of
    the Black-Scholes Model and Its Alternatives” Journal of Finance 4,
    September, 1181-1210.
    MacBeth, J. D., and L. J. Merville, 1979, “An Empirical Examination of the
    Black-Scholes Call Option Pricing Model” Journal of Finance 34, December,
    1173-1186.
    Merton, R. C., 1976, “Option Pricing When Underlying Stock Returns Are
    Discontinuous” Journal of Financial Economics, 3, 125-44.
    Ross, Sheldon M., 2003, “An Introduction to Mathematical Finance:Options and
    Other Topics” 2nd ed, Cambridge University Press, New York.
    Scott, L., 1987, “Option Pricing When the Variance Changes Randomly: Theory,
    Estimation, and an Application” Journal of Financial and Quantitative
    Analysis, 22, December, 419-438.
    Seydel, R., 2004, “Tools for Computational Finance” 2nd ed, Berlin, Springer
    New York.
    Samuelson, P.A., 1965, “Proof that properly anticipated prices fluctuate
    randomly” Industrial Management Review 6, 41-50.
    Shih-Huang, C., Hsinan, H., and Tzung-Yuan, H., 2003, “Determinants of the
    Volatility of Stock Prices” Journal of Risk Management, 5, 2, July, 167-193.
    Son-Nan, C., 1999, “The Option Pricing Model under Discrete Hedging and
    Transaction Cost: Adjusting The Theory for Practical Viewpoint” Journal of
    Risk Management, 1, 2, November, 43-54.
    Wiener, N., 1923, “Differential space” J. Math. Phys. Math. Inst. Tech. 2,
    131-74.
    李育嘉,1985, “漫談布朗運動” 數學傳播季刊第9卷第三期.中央研究院數學研究所發行.
    姜祖恕,1985, “馬可夫鏈的簡介” 數學傳播季刊第9卷第三期.中央研究院數學研究所發
    行.

    下載圖示 校內:2006-07-11公開
    校外:2006-07-11公開
    QR CODE