簡易檢索 / 詳目顯示

研究生: 王文龍
Wang, Wen-Long
論文名稱: 通電機制對 ZnO-In/Ag-ZnO 薄膜顯微組織與光電特性之影響
An Investigation on Microstructure and Opto-electrical Characteristics of ZnO-In/Ag-ZnO Thin Films Using the Electrical Current Mechanism
指導教授: 洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 氧化鋅通電再結晶光電
外文關鍵詞: Electrical Current, Zinc Oxide, Opto-Electricity, Recrystallization
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前透明導電薄膜均需要在 400~700 ℃ 進行 1~2 小時之退火,以獲得均質結晶組織及優異光電性質。考量透明導電薄膜在軟性高分子基板之應用,傳統高溫退火製程受到侷限。因此,本研究以奈米金屬薄膜為導電層,並透過通電試驗進而探討 ZnO/In/ZnO 與 ZnO/Ag/ZnO 奈米透明導電薄膜結構之低溫通電特性。
    實驗結果顯示,未通電 ZnO/In/ZnO 結構,中間 In 層是連續薄膜,ZnO 與 In 界面處有微擴散現象;未通電 ZnO/Ag/ZnO 結構,中間 Ag層呈現顆粒狀膜,Ag 層部分基地具有雙晶結構。無論是 ZnO/In/ZnO 或ZnO/Ag/ZnO 系統,通電後不僅可誘發表面溫度達 140℃~170℃,並可使得 ZnO 薄膜之結晶度與電性質獲得改善。通電過程在焦耳熱和電遷移作用下,可驅動導電層原子往低濃度基地擴散,除了增加界面擴散層厚度外,ZnO 薄膜基地亦具有摻雜與部份再結晶,此低溫通電結晶化效應能有效提升 ZnO 薄膜電性。另外,通電試片之拉曼光譜均能被強化,但因大部份光子動能都被吸附用以促進再結晶行為,使得光子強度有下降和偏移特性。再者,奈米金屬導電層容易抑制 ZnO 之傅立葉轉換紅外線光譜訊號,導致傅立葉轉換紅外線光譜儀無法辨識薄膜結構於通電前後之差異性。透明導電薄膜之通電機制可於短時間內誘發薄膜結構發生相變態,進而改善光電特性,可提供低溫薄膜製程之應用參考。

    Transparent conductive oxide (TCO) film needs annealing in 400~700 ℃ for 1~2 hours to obtain homogeneous crystalline texture and excellent photoelectric properties presently. Considering the application of TCO films in flexible polymer substrate, conventional high temperature annealing process is trapped. Therefore, in this thesis, the nano metallic film is used for a conductive layer, and the low-temperature electrical current characters of ZnO/In/ZnO as well as the ZnO/Ag/ZnO nano TCO structures are researched by electrical current testing.
    The experimental results show that the middle indium layer is a continuous film, and the interface of ZnO as well as indium has micro diffusion phenomena in the as-sputtered ZnO/In/ZnO structure; as for the as-sputtered ZnO/Ag/ZnO structure, the middle silver layer is a granular film, and part of silver sites are twins structure. The induced temperature by electrical current testing in the both ZnO sandwich structures can reach 140℃~170℃ and the crystallization as well as the electric property can be improved. In the electrical current process, the conductive layer atoms will diffuse to lower concentration sites by Joule heating and electromigration effects which increase the thickness of interfacial diffusion layer, and the ZnO sites possess doping and partial recrystallization phenomena. Therefore, the low-temperature electrical current crystallization effect can promote the electric property of ZnO film effectively. Besides, the Raman spectrum of the electrical current sample can be enhanced but most of photon energy is absorbed to promote recrystallization behavior and this behavior also lets photon intensity decrease and shift. Moreover, nano metallic layer will suppress the FTIR spectra of ZnO easily, so it is difficult to differentiate the film texture differences about the as-sputtered and the electrical current testing samples by FTIR spectra. In a word, the electrical current mechanism for TCO can induce film texture phase transformations and improve the photoelectric characteristics to provide the application of low-temperature film process.

    中文摘要................................................................................................I Abstract................................................................................................II 致謝.....................................................................................................IV 總目錄...................................................................................................V 表目錄................................................................................................VIII 圖目錄..................................................................................................IX 第一章 緒論..........................................................................................1 1-1 前言.........................................................................................1 1-2 實驗目的..................................................................................2 第二章 理論基礎與文獻回顧................................................................3 2-1 透明導電氧化物(TCO)的製備..................................................3 2-2 氧化鋅薄膜的結構與特性.........................................................3 2-2-1 晶體結構........................................................................3 2-2-2 導電性質........................................................................4 2-2-3 光學性質........................................................................5 2-3 金屬薄膜的特性.......................................................................5 2-4 濺鍍理論..................................................................................6 2-4-1 濺鍍現象........................................................................6 2-4-2 直流濺鍍........................................................................6 2-4-3 磁控濺鍍........................................................................7 2-5 薄膜成長機制...........................................................................8 2-6 熱處理.....................................................................................9 2-7 通電熱處理............................................................................10 2-8 氧化鋅與中間金屬層接觸前後界面能帶機制..........................10 第三章 實驗方法與設備......................................................................18 3-1 實驗流程概述.........................................................................18 3-2 實驗材料準備.........................................................................18 3-2-1 濺鍍靶材與基板............................................................18 3-2-2 基板清洗......................................................................18 3-3 濺鍍製程參數.........................................................................19 3-4 薄膜厚度量測.........................................................................19 3-5 通電儀器與條件.....................................................................19 3-6 薄膜微結構分析.....................................................................20 3-6-1 掃描式電子顯微鏡(SEM)分析.......................................20 3-6-2 低掠角X光繞射儀(GIXRD)量測....................................20 3-6-3 穿透式電子顯微鏡(TEM)分析.......................................21 3-7 界面分析-化學分析電子儀(ESCA)鑑定..................................22 3-8 光電性質分析.........................................................................22 3-8-1 紫外-可見光分光光譜儀(UV-VIS Spectrophotometer)試驗...............................................................................................22 3-8-2 四點探針分析...............................................................22 3-8-3 拉曼光譜儀(Raman Spectrometer)檢測.......................23 第四章 實驗結果................................................................................32 4-1 ZnO/In/ZnO 鍍膜顯微組織特徵..............................................32 4-2 ZnO/In/ZnO 鍍膜通電誘發結構與電性之演變........................34 4-3 ZnO/Ag/ZnO 鍍膜顯微結構...................................................36 4-4通電鍍膜 ZnO/Ag 光電特性..................................................37 4-5通電鍍膜 ZnO/Ag 之結晶機制...............................................38 第五章 結果與討論.............................................................................73 5-1通電鍍膜光特性......................................................................73 5-2通電鍍膜之拉曼特性...............................................................73 5-3通電鍍膜之傅立葉轉換紅外線光譜特性..................................74 5-4薄膜 Zn/M/Zn 電致相變態行為..............................................74 第六章 結論........................................................................................80 參考文獻.............................................................................................81

    [1] B. G. Lewis, and D. C. Paine, “Applications and Processing of Transparent Conducting Oxides”, MRS Bullentin, Vol. 25, pp. 22-27, (2000).
    [2] M.-J. Keum, B.-J. Cho, H.-W. Choi, S.-J. Parka, and K.-H. Kim, “Preparation of Al Doped ZnO Thin Films as a Function of Substrate Temperature by a Facing Target Sputtering System”, J. Ceram. Process. Res., Vol. 8, pp. 56-58, (2007).
    [3] J. L. Vossen, “Transparent Conducting Films”, Physics of Thin Film, Vol. 9, pp. 1-64, (1977).
    [4] K. L. Chopra, “Growth of Thin Metal Films under Applied Electric Field”, Appl. Phys. Lett., Vol. 7, pp. 140-142, (1965).
    [5] D. I. Kennedy, R. E. Hayes, and R. W. Alsford, “The Influence of Charge Effects on the Growth and Electrical Resistivity of Thin Metal Films”, J. Appl. Phys., Vol. 38, pp. 1986-1987, (1967).
    [6] E. Ahilea, and A. A. Hirsch, “Resistance of Thin Metal Films Grown under a Longitudinal Electric Field”, J. Appl. Phys., Vol. 42, pp. 5601-5608, (1971).
    [7] D. Zhang, Z. Deng, J. Zhang, and L. Chen, “Microstructure and Electrical Properties of Antimony-Doped Tin Oxide Thin Film Deposited by Sol-Gel Process”, Mater. Chem. Phys., Vol. 98, pp. 353-357, (2006).
    [8] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, “Dependence of Film Composition and Thicknesses on Optical and Electrical Properties of ITO-Metal-ITO Multilayers”, Thin Solid Films, Vol. 326, pp. 67-71, (1998).
    [9] T. Minami, “Present Status of Transparent Conducting Oxide Thin-Film Development for Indium-Tin-Oxide (ITO) Substitutes”, Thin Solid Films, Vol. 516, pp. 5822-5828, (2008).
    [10] J. Hu, and R. G. Gordon, “Textured Aluminum-Doped Zinc Oxide Thin Films from Atmospheric Pressure Chemical-Vapor Deposition”, J. Appl. Phys., Vol. 71, pp. 880-890, (1992).
    [11] T. Minami, “Transparent Conducting Oxide Semiconductors for Transparent Electrodes”, Semicond. Sci. Technol., Vol. 20, pp. 35-44, (2005).
    [12] J. K. Kim, J. W. Lim, H. T. Kim, S. H. Kim, and S. J. Yun, “Fabrication of p-Type ZnO Thin Films Using RF-Magnetron Sputter Deposition”, Electrochem. Solid-State Lett., Vol. 12, pp. 109-112, (2009).
    [13] R. Das, K. Adhikary, and S. Ray, “Comparison of Electrical, Optical, and Structural Properties of RF-Sputtered ZnO Thin Films Deposited under Different Gas Ambients”, Jpn. J. Appl. Phys., Vol. 47, pp. 1501-1506, (2008).
    [14] L. Dai, H. Deng, G. Chen, and J. Chen, “Ultraviolet Emission Properties of ZnO Film with Zinc Deficiency by SS CVD”, Appl. Surf. Sci., Vol. 254, pp. 1599-1603, (2008).
    [15] X. Meng, B. Lin, and Z. Fu, “Influence of CH3COO- on the Room Temperature Photoluminescence of ZnO Films Prepared by CVD”, J. Lumin., Vol. 126, pp. 203-206, (2007).
    [16] H. Song, J.-H. Kim, E. K. Kim, and S.-M. Hwang, “Characteristics of Plasma Hydrogenated ZnO Films Oriented along the (11-20) Plane Grown by Pulsed Laser Deposition”, Thin Solid Films, Vol. 517, pp. 3927-3930, (2009).
    [17] P. Misra, T. K. Sharma, and L. M. Kukreja, “Temperature Dependent Photoluminescence Processes in ZnO Thin Films Grown on Sapphire by Pulsed Laser Deposition”, Curr. Appl. Phys., Vol. 9, pp. 179-183, (2009).
    [18] N.-J. Kim, S.-L. Choi, H. J. Lee, and K. J. Kim, “Nanostructures and Luminescence Properties of Porous ZnO Thin Films Prepared by Sol-Gel Process”, Curr. Appl. Phys., Vol. 9, pp. 643-646, (2009).
    [19] D. Raoufi, and T. Raoufi, “The Effect of Heat Treatment on the Physical Properties of Sol-Gel Derived ZnO Thin Films”, Appl. Surf. Sci., Vol. 255, pp. 5812-5817, (2009).
    [20] D. Yuvaraj, and K. N. Rao, “Optical and Electrical Properties of ZnO Films Deposited by Activated Reactive Evaporation”, Vacuum, Vol. 82, pp. 1274-1279, (2008).
    [21] M. Asghar, H. Noor, M. S. Awan, S. Naseem, and M.-A. Hasan, “Post-Annealing Modification in Structural Properties of ZnO Thin Films on p-type Si Substrate Deposited by Evaporation”, Mater. Sci. Semicond. Process., Vol. 11, pp. 30-35, (2008).
    [22] T. J. Boyle, S. D. Bunge, N. L. Andrews, L. E. Matzen, K. Sieg, M. A. Rodriguez, and T. J. Headley, “Precursor Structural Influences on the Final ZnO Nanoparticle Morphology from a Novel Family of Structurally Characterized Zinc Alkoxy Alkyl Precursors”, Chem. Mater., Vol. 16, pp. 3279-3288, (2004).
    [23] M. Izaki, and T. Omi, “Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reaction”, J. Electrochem. Soc., Vol. 144, pp. 1949-1952, (1997).
    [24] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of Preferred Orientation for ZnOx Films: Control of Self-Texture”, J. Cryst. Growth, Vol. 130, pp. 269-279, (1993).
    [25] D. C. Agarwal, R. S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S. A. Khan, D. K. Avasthi, J. C. Pivin, M. Kumar, J. Ghatak, and P. V. Satyam, “Synthesis and Characterization of ZnO Thin Film Grown by Electron Beam Evaporation”, J. Appl. Phys., Vol. 99, pp. 123105-1-123105-6, (2006).
    [26] C. Gumus, O. M. Ozkendir, H. Kavak, and Y. Ufuktepe, “Structural and Optical Properties of Zinc Oxide Thin Films Prepared by Spray Pyrolysis Method”, J. Optoelectron. Adv. M., Vol. 8, pp. 299-303, (2006).
    [27] Y. F. Mei, G. G. Siu, R. K. Y. Fu, P. K. Chu, Z. M. Li, and Z. K. Tang, “Room-Temperature Electrosynthesized ZnO Thin Film with Strong (002) Orientation and Its Optical Properties”, Appl. Surf. Sci., Vol. 252, pp. 2973-2977, (2006).
    [28] N. Kavasoglu, and A. S. Kavasoglu, “Metal-Semiconductor Transition in Undoped ZnO Films Deposited by Spray Pyrolysis”, Physica B, Vol. 403, pp. 2807-2810, (2008).
    [29] A. P. Roth, J. B. Webb, and D. F. Williams, “Absorption Edge Shift in ZnO Thin Films at High Carrier Densities”, Solid State Commun., Vol. 39, pp. 1269-1271, (1981).
    [30] T. S. Moss, “The Interpretation of the Properties of Indium Antimonide”, Proc. Phys. Soc. B, Vol. 67, pp. 775-782, (1954).
    [31] E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys. Rev., Vol. 93, pp. 632-633, (1954).
    [32] I. Hamberg, and C. G. Granqvist, “Evaporated Sn-Doped In2O3 Films: Basic Optical Properties and Applications to Energy-Efficient Windows”, J. Appl. Phys., Vol. 60, pp. R123-R159, (1986).
    [33] Y. Tsuda, H. Omoto, K. Tanaka, and H. Ohsaki, “The Underlayer Effects on the Electrical Resistivity of Ag Thin Film”, Thin Solid Films, Vol. 502, pp. 223-227, (2006).
    [34] S. P. Murarka, R. J. Gutmann, A. E. Kaloyeros, and W. A. Lanford, “Advanced Multilayer Metallization Schemes with Copper as Interconnection Metal”, Thin Solid Films, Vol. 236, pp. 257-266, (1993).
    [35] X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The Design of ZnS/Ag/ZnS Transparent Conductive Multilayer Films”, Thin Solid Films, Vol. 441, pp. 200-206, (2003).
    [36] P. Zhao, R. Wang, D. Liu, F. Zhang, W. Su, and X. Xu, “Underlayer Roughness Influence on the Properties of Ag Thin Film”, Surf. Rev. Lett., Vol. 15, pp. 787-791, (2008).
    [37] S. M. Rossnagel, “Handbook of Plasma Processing Technology”, Noyes Publications, pp. 341-343, (1989).
    [38] D. S. Richerby, and A. Matthews, “Advanced surface Coating”, Chapman and Hall, pp. 24, (1994).
    [39] H. W. Loeb, “Plasma-Based Ion Beam Sources”, Plasma Phys. Control. Fusion, Vol. 47, pp. B565-B576, (2005).
    [40] D. M. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publications, pp. 330-333, (1998).
    [41] B. Chapman, “Glow Discharge Processes”, Wiley, pp. 201-203, (1980).
    [42] H. J. Park, J. H. Park, J. I. Choi, J. Y. Lee, J. H. Chae, and D. Kim, “Fabrication of Transparent Conductive Films with a Sandwich Structure Composed of ITO/Cu/ITO”, Vacuum, Vol. 83, pp. 448-450, (2009).
    [43] Y.-S. Min, E. J. Bae, U. J. Kim, and W. Parka, “Direct Growth of Single-Walled Carbon Nanotubes on Conducting ZnO Films and Its Field Emission Properties”, Appl. Phys. Lett., Vol. 89, pp. 113116-1-113116-3, (2006).
    [44] E. Spanakis, A. Chimmalgi, E. Stratakis, C. P. Grigoropoulos, C. Fotakis, and P. Tzanetakis, “Atomic Force Microscopy Based, Multiphoton, Photoelectron Emission Imaging”, Appl. Phys. Lett., Vol. 89, pp. 013110-1-013110-3, (2006).
    [45] H. Ohnuki, W. Changhai, M. Izumi, Y. Tatewaki, and K. Ikegami, “Effects of Interfacial Modification on the Performance of an Organic Transistor Based on TCNQ LB Films”, Thin Solid Films , Vol. 516, pp. 2747-2752, (2008).
    [46] H. Han, N. D. Theodore, and T. L. Alford, “Improved Conductivity and Mechanism of Carrier Transport in Zinc Oxide with Embedded Silver Layer”, J. Appl. Phys., Vol. 103, pp. 013708-1-013708-8, (2008).
    [47] R. Souda, S. Otani, and H. Kawanowa, “Band Effects on Stimulated Desorption of F+ from CaF2 and Fluorinated TiC (111) Surfaces”, J. Phys. Chem. B, Vol. 104, pp. 5492-5497, (2000).
    [48] K. Merrett, R. M. Cornelius, W. G. Mcclung, L. D. Unsworth, and H. Sheardown, “Surface Analysis Methods for Characterizing Polymeric Biomaterials”, J. Biomater. Sci. Polym. Ed, Vol. 13, pp. 593-621, (2002).
    [49] H. Bubert, and H. Jenett, “Surface and Thin Film Analysis”, Wiley-VCH, pp. 208-210, (2002).
    [50] L. A. Bendersky, and F. W. Gayle, “Electron Diffraction Using Transmission Electron Microscopy”, J. Res. Natl. Inst. Stand. Technol., Vol. 106, pp. 997-1012, (2001).
    [51] C. V. Gulijk, K. M. Lathouder, and R. Haswell, “Characterizing Herring Bone Structures in Carbon Nanofibers Using Selected Area Electron Diffraction and Dark Field Transmission Electron Microscopy”, Carbon, Vol. 44, pp. 2950-2956, (2006).
    [52] J. D. Laumb, S. A. Benson, and E. A. Olson, “X-Ray Photoelectron Spectroscopy Analysis of Mercury Sorbent Surface Chemistry”, Fuel Process. Technol., Vol. 85, pp. 577-585, (2004).
    [53] F. M. Smits, “Measurement of Sheet Resisitivities with the Four-Point Probe”, Bell Syst. Tech. J., Vol. 37, pp. 711-718, (1958).
    [54] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-Enhanced Raman Scattering and Biophysics”, J. Phys.: Condens. Matter, Vol. 14, pp. R597-R624, (2002).
    [55] M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, and T. Hirao, “Oxygen Bombardment Effects on Average Crystallite Size of Sputter-Deposited ZnO Films”, J. Non-Cryst. Solids, Vol. 354, pp. 1926-1931, (2008).
    [56] S.-Y. Pung, K.-L. Choy, X. Hou and C. Shan, “Preferential Growth of ZnO Thin Films by the Atomic Layer Deposition Technique”, Nanotechnology, Vol. 19, pp. 435609-1-435609-8, (2008).
    [57] M. H. Cho, and G. H. Lee, “Growth of High Quality Rutile TiO2 Thin Film Using ZnO Buffer Layer on Si(100) Substrate”, Thin Solid Films, Vol. 516, pp. 5877-5880, (2008).
    [58] M. H. Shin, M. S. Park, S. H. Jung, J. H. Boo, and N.-E. Lee, “Effect of Doping Elements on ZnO Etching Characteristics with CH4/H2/Ar Plasma”, Thin Solid Films, Vol. 515, pp. 4950-4954, (2007).
    [59] J. Zhang, H. Feng, W. Hao, and T. Wang, “Luminescence of Nanosized ZnO/polyaniline Films Prepared by Self-Assembly”, Ceram. Int., Vol. 33, pp. 785-788, (2007).
    [60] T. Tsuji, and M. Hirohashi, “Influence of Oxygen Partial Pressure on Transparency and Conductivity of RF sputtered Al-Doped ZnO Thin Films”, Appl. Surf. Sci., Vol. 157, pp. 47-51, (2000).
    [61] J. Wang, V. Sallet, G. Amiri, J.-F. Rommelluere, A. Lusson, J. E. Lewis, P. Galtier, E. Fortunato, R. Martins, and O. Gorochov, “Influence of the Self-Buffer Layer on ZnO Film Grown by Atmospheric Metal Organic Chemical Vapor Deposition”, Thin Solid Films, Vol. 515, pp. 1527-1531, (2006).
    [62] B. Yang, A. Kumar, P. Feng, and R. S. Katiyar, “Structural Degradation and Optical Property of Nanocrystalline ZnO Films Grown on Si (100)”, Appl. Phys. Lett., Vol. 92, pp. 233112-1-233112-3, (2008).
    [63] Z. G. Zhang, F. Zhou, X. Q. Wei, M. Liu, G. Sun, C. S. Chen, C. S. Xue, H. Z. Zhuang, and B. Y. Man, “Effects of Oxygen Pressures on Pulsed Laser Deposition of ZnO Films”, Physica E, Vol. 39, pp. 253-257, (2007).
    [64] H. Zhao, and R. K. Y. Li, “A study on the Photo-Degradation of Zinc Oxide (ZnO) Filled Polypropylene Nanocomposites”, Polymer, Vol. 47, pp. 3207-3217, (2006).
    [65] Z. Yang, and Q.-H. Liu, “Controllable Synthesis and Optical Characterizations of ZnO Nanostructures by Citric Acid-Assisted Annealing Process”, Physica E, Vol. 40, pp. 531-535, (2008).

    下載圖示 校內:2011-07-30公開
    校外:2011-07-30公開
    QR CODE