| 研究生: |
劉明喬 Liu, Ming-Chiao |
|---|---|
| 論文名稱: |
矽基板上以不同碳團簇成長類鑽碳薄膜之分析 Growth of diamond-like carbon films on Si substrate by various carbon cluster assembly |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 分子動力學 、類鑽碳薄膜 、矽基板 、碳團簇 |
| 外文關鍵詞: | Molecular Dynamics, Diamond-like carbon film, Si substrate, carbon cluster |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
類鑽碳薄膜(Diamond-like carbon film)具有優良的力學性質同時也兼具良好的導電性質。其中藉由碳團簇所沉積而成之類鑽碳薄膜主要是以極佳的導電性著稱,也就是內部sp2石墨結構含量較高。而本文利用分子動力學模擬C20、C60與C80三種團簇沉積於矽基板成長類鑽碳薄膜,並觀察其結構與鍵結含量,而影響機械性質的sp3鑽石結構含量是本研究所關心的重點。
經過模擬分析之後,發現各種團簇在記憶效應的表現上不完全相同,而隨著入射能量增加,各種團簇之結構其扭曲變形的情形皆會跟著增加,使得團簇記憶效應逐漸消失;同時,各種團簇所沉積出的薄膜會因為團簇記憶效應消失,進而增加團簇間原子的作用機會,除了使整體薄膜品質獲得提升外,sp3鑽石結構之含量也會相對增加。針對不同團簇對薄膜各項參數之影響,本文除了從原子的觀點作討論外,也與實驗觀察到的現象有著相同的趨勢。
Diamond-like carbon film was characterized by excellent mechanical and electronic properties. Diamond-like carbon film which deposited by carbon clusters was famous for its excellent electronic properties, and its fraction of graphite (sp2 bonds) is higher. This research used Molecular Dynamics to simulate the growth of Diamond-like carbon film on Si substrate by three kinds of clusters, C20, C60, and C80. And investigated the structure and the bonds content of the films, however the fraction of diamond (sp3 bonds) which relates to mechanical properties was what this research concerned.
After the analysis, we found that the memory effect on various cluster was different. However, with the incident energy increased, the memory effect in various clusters disappeared gradually with the distortion and deformation of the clusters. Meanwhile, because the disappearance of the memory effect, the atoms in all of the films which deposited by various clusters will have more chances to interact with each other atoms. It improved the quality of the films and increased the sp3 fraction. This research discussed the effect of various clusters upon the parameters of the films except from the nanoscale viewpoints, the behaviors of the films which deposited by various clusters are almost in agreement with the results of experiments.
[1] X. L. Peng, Z. H. Barber, and T. W. Clyne, “Surface roughness of diamond-like carbon films prepared using various techniques”, Surface and Coatings Technology, Vol. 138, pp. 23-32, 2001.
[2] D. Liu, G. Benstetter, E. Lodermeier, X. Chen, J. Ding, Y. Liu, J. Zhang, and T. Ma, “Surface and structural properties of ultrathin diamond-like carbon coatings”,
[3] J. C. Sanchez-Lopez, C. Donnet, J. L. Loubet, M. Belin, A. Grill, V. Patel, and C. Jahnes, “Tribological and mechanical properties of diamond-like carbon prepared by high-density plasma”, Diamond and Related Materials, Vol. 10, pp.1063-1069,2001.
[4] J.-H. Wu, S. Karthikeyan, M. L. Falk, and D. A. Rigney, “Tribological characteristics of diamond-like carbon (DLC) based nanocomposite coatings”, Wear, Vol. 259, pp.744-751,2005.
[5] D. Liu, G. Benstetter, E. Lodermeier, X. Chen, J. Ding, Y. Liu, J. Zhang, and T. Ma, “Surface and structural properties of ultrathin diamond-like carbon coatings”, Diamond and Related Materials, Vol. 12, pp.1594-1600, 2003.
[6] 陳培麗, “鑽石與類鑽膜簡介”, 科儀新知, Vol. 13, No. 2, pp. 82-91, 1991
[7] T. Hayashi, A. Matsumuro, M. Muramatsu, M. Kohzaki, Y. Takahashi, and K. Yamaguchi, “Structural Analysis of a Carbon Nitride Film Prepared by Ion-Beam-Assisted Deposition”, Jpn. J. Appl. Phys, Vol. 38, No. 4A, 1999.
[8] W. Kautek, S. Pentzien, A. Conradi, J. Kruger, K.-W. Brzezinka, “Pulsed-laser deposition and boron-blending of diamond-like carbon (DLC) thin films”, Applied Surface Science, Vol. 106, pp. 158-165, 1996.
[9] S. Ravi, P. Silva, S. Xu, B. X. Tay, and H. S. Tan, “Nanocrystallites in tetrahedral amorphous carbon films”, Appl. Phys. Lett., Vol. 69, 1996.
[10] D. R. McKenzie, “Tetrahedral bonding in amorphous carbon”, Rep. Prog. Phys, Vol. 59, pp.1611-1664, 1996.
[11] 張瑞發, “類鑽薄膜技術”, 化工資訊, 四月號, pp. 68-77, 1993.
[12] J. H. Irving, and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Process. IV. The Equation of Hydrodynamics”, J. Chen. Phys., Vol. 18, No. 6, pp. 817-829, 1950.
[13] B. J. Alder, and T. E. Wainwright, “Studies in Molecular Dynamics. I. General Method”, J. Chen. Phys., Vol. 31, No. 2, pp. 459-466, 1959.
[14] B. J. Alder, and T. E. Wainwright, “Decay of the Velocity Autocorrelation Function”, Phys. Rev. A, Vol. 1, No. 1, pp. 18-21, 1970.
[15] G. Ciccotti, and W. G. Hover, “Molecular Dynamics Simulation of Statistical Mechanics System, Amsterdam”, North Holland, 1986.
[16] M. P. Allen, and D. J. Tildesley, “Computer Simulation of Liquids”, Oxford, Claredon, 1987.
[17] J. M. Hailie, “Molecular Dynamics Simulation Elementary Method”, New York :Wiley, 1993.
[18] L. Verlet, “Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Physical Review, Vol. 159, No. 1, pp. 98-103, 1967.
[19] B. Quentrec, and C. Brot , “New Method for Searching for Neighbors in Molecular Dynamics Computations”, J. Comput. Phys., Vol. 13, No. 3, pp. 430-432, 1975.
[20] D. C. Rapaport, “Molecular-Dynamics Study of Rayleigh-Benard Convection”, Layered cell link, Vol. 60, No. 24, pp.2480-2483, 1988.
[21] G. S. Grest, B. Dunweg, and K. Kremer, “Vectorized Link Cell Fortran Code for Molecular Dynamics Simulations for a Large Number of Particles”, Comput. Phys. Commun., Vol. 55, No. 3, pp. 269-285, 1989.
[22] Isao Yamada, and Gikan H. Takaoka, “Ionized Cluster Beams:Physics and Technology”, Jpn. J. Appl. Phys., Vol. 32, pp. 2121-2141, 1993.
[23] V. Paillard, P. Melinon, V. Dupuis, J. P. Perez, and A. Perez, “Diamondlike Carbon Films Obtained by Low Energy Cluster Beam Deposition:Evidence of a Memory Effect of the Properties of Free Carbon Clusters”, Physical Review Letters, Vol. 71, No. 25, 1993.
[24] H. Haberland, Z. Insepov, and M. Moseler, “Molecular-dynamics simulation of thin-film growth by energetic cluster impact”, Physical Review B, Vol. 51, No. 16, 1995.
[25] I. Yamada, and G. H. Takaoka, “Ionized Cluster Beams:Physics and Technology”, Jpn. J. Appl. Phys, Vol. 32, No. 5A, 1993.
[26] S. A. Fedotov, A. A. Efimchik, A. V. Byeli, “DLC growth by ion beam assisted deposition:a molecular simulation”, Diamond and Related Materials, Vol. 6, pp.1638-1642, 1997.
[27] E. Neyts, A. Bogaerts, R. Gijbels, J. Benedikta, M. C. M. van de Sanden, “Molecular dynamics simulation of the impact behavior of various hydrocarbon species on DLC”, Nucl. Instr. and Meth. In Phys. Res., Vol. B 228, pp.315-318, 2005.
[28] S. H. Lee, C. S. Lee, S. C. Lee, K. H. Lee, and K. R. Lee, “Structural properties of amorphous carbon films by molecular dynamics simulation”, Surface and Coatings Technology, Vol.177-178, pp. 812-817, 2004.
[29] H. Lin, and Z. Kang, “Molecular Dynamics Simulations of Structures of Amorphous Carbon Films via Deposition”, Advanced Materials Research, Vol. 194-196, pp. 2220-2224, 2011.
[30] M. Weiler, S. Sattel, K. Jung, and H. Ehrhardt, V. S. Veerasamy, J. Robertson, “Highly tetrahedral, diamond-like amorphous hydrogenated carbon prepared from a plasma beam source”, Appl. Phys. Lett., Vol. 64, 1993.
[31] J. Robertson, “Diamond-like carbon”, Pure & Appl. Chem., Vol. 66, No. 9, pp. 1789-1796, 1994.
[32] S. Sattel, T. Gieben, H. Roth, M. Scheib, R. Samlenski, R. Brenn, H. Ehrhardt, J. Robertson, “Temperature dependence of the formation of highly tetrahedral a-C : H”, Diamond and Relatived Materials, Vol. 5, pp. 425-428, 1996.
[33] A. C. Ferrari, J. Robertson, M. G. Beghi, C. E. Bottani, R. Ferulano, and R. Pastorelli, “Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering”, Appl. Phys. Lett., Vol. 75, No. 13, 1999.
[34] M. O. Kaukonen, and R. M. Nieminen, “Molecular-dynamics simulation of the growth of diamond-like films”, Surface science, Vol. 331-333, pp. 975-977, 1995.
[35] H. U. Jager, and K. Albe, “Molecular-dynamics simulations of steady-state growth of ion-deposited tetrahedral amorphous carbon films”, J. Appl. Phys., Vol. 88, No. 2, 2000.
[36] V. Paillard, P. Melinon, V. Dupuis, J. P. Perez, and A. Perez, “Diamondlike Carbon Films Obtained by Low Energy Cluster Beam Deposition:Evidence of a Memory Effect of the Properties of Free Carbon Clusters”, Physical Review Letters, Vol. 71, No. 25, 1993.
[37] Z. Pan, W. Zhu, Z. Man, Y. Xu, and Y. Ho, “Investigation of low-energy carbon cluster depositions on surfaces by a molecular dynamics simulation”, Surface and Coatings Technology, Vol. 128-129, pp. 76-80, 2000.
[38] A. J. Du, Z. Y. Pan, Y. K. Ho, Z. Huang, and Z. X. Zhang, “Memory effect in the deposition of C20 fullerenes on a diamond surface”, PHYSICAL REVIEW, Vol. B 66, 2002.
[39] J. G. Chang, C. C. Hwang, S. P. Ju, and S. H. Huang, “A molecular dynamics simulation investigation into the structure of fullerene C60 grown on a diamond substrate”, Carbon, Vol. 42, pp. 2609-2616, 2004.
[40] E. B. Halac, M. Reinoso, A. G. Dall’Asen, and E. Burgos, “Molecular dynamics simulation of the growth of thin films by deposition of carbon atoms and C60 molecules on diamond and silicon substrates”, Physical Review, Vol. B 71, 2005.
[41] A. G. Dall’Asen, M. Verdier, H. Huck, E. B. Halac, and M. Reinoso, “Nanoindentation on carbon thin films obtained from a C60 ion beam”, Applied Surface Science, Vol. 252, pp. 8005-8009, 2006.
[42] T. B. Ma, Y. Z. Hu, and H. Wang, “Growth of ultrathin diamond-like carbon films by C60 cluster assembly: Molecular dynamics simulations”, Diamond & Related Materials, Vol. 18, pp. 88-94, 2009.
[43] W. C. D. Cheng, and L. C. Zhang, “Molecular Dynamics Simulation of Phase Transformation in Silicon Monocrystals Due to Nano-Indentation”, Nanotechnology, Vol. 11, pp. 173-180, 2000.
[44] J. E. Jones, “The Determination of Molecular Fields I. From the Variation of the Viscosity of a Gas with Temperature”, Proc. R. Soc. London, Ser. A, Vol. 106, No. 738, pp. 441-462, 1924.
[45] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No. 3, pp.687-390, 1959.
[46] F. Cleri, and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Phys. Rev. B: Condens. Matter, Vol. 48, No. 1, pp. 22-33, 1993.
[47] S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-Atom Method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys”, Phys. Rev. B, Vol. 33, No. 12, pp. 7983-7991, 1986.
[48] M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities”, Phys. Rev. B, Vol. 46, No. 5, pp. 2727-2742, 1992.
[49] M. S. Daw, S. M. Faoiles, and M. I. Baskes, “The emdedded-atom method: a review of theory and applications”, Material Science Report., Vol. 9, pp. 251-310, 1993.
[50] J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Phys. Rev. B: Condens. Matter, Vol. 39, No. 8, pp. 5566-5568, 1989.
[51] J. M. Hailie, Molecular Dynamics Simulation Elementary Method, New York: John Wiley&Sons. Inc., 1993.
[52] T. Iwaki, “Molecular Dynamic Study on Stress-Strain in Very Thin Film”, JSME Int. J. Ser. A, Vol. 39, No. 3, pp. 346-353, 1988.
[53] D. Donadio, L. Colombo, P. Milani, and G. Benedek, “Growth of Nanostructured Carbon Films by Cluster Assembly”, Physical Review Letters, Vol. 83, No. 4, 1999.
[54] H. U. Jager, and A. Yu. Belov, “ta-C deposition simulations: Film properties and time-resolved dynamics of film formation”, Physical Review B, Vol. 68, 2003.
[55] A. K. Soper, W. I. F. David, D. S. Sivia, T. J. S. Dennis, J. P. Hare, and K. Prassides, “A pair correlation function study of the structure of C60”, J. Phys: Condens, Vol. 4, pp. 6087-6094, 1992.
[56] Carles Corbella Roca, Thin film structure of diamond-like carbon prepared by pulsed plasma techniques, Barcelona, 2005.