| 研究生: |
朱心平 Chu, Hsin-Ping |
|---|---|
| 論文名稱: |
應用微分轉換法於強非線性物理系統之研究 Application of the Differential Transformation Method to Strongly Nonlinear Physical Systemsems |
| 指導教授: |
陳朝光
Chen, C. K. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 微分轉換法 、非線性系統 |
| 外文關鍵詞: | differential transform method, nonlinear system |
| 相關次數: | 點閱:126 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文運用微分轉換法求解各式物理系統,包括具強烈非線性之單自由度系統、非均勻軸的振動問題、擴散流動問題、Klein-Gordon問題及非線性熱傳問題等。文中首先介紹微分轉換理論的基本定義、性質及演算方法,然後在第三至八章中,分別介紹此法在各種物理問題上的應用。本文之研究內容顯示微分轉換法可用於求解具強烈非線性系統的時間響應,也可用於求解變係數微分方程之特徵值問題,而微分轉換法配合有限差分法可用於求解線性或非線性偏微分方程式。一般而言,應用微分轉換法解微分方程式時僅需很短的運算時間,而其結果與解析解做比對時只顯示出極小的誤差,由此可見微分轉換法是求解線性或非線性微分方程式的有力工具。
In this research, the differential transformation method was employed to predict the behaviors of various physical problems including the strongly nonlinear oscillators, the vibration problems of non-uniform shafts, the advective-dispersive transport problems, the nonlinear Klein-Gordon problems and some nonlinear heat transfer problems. The basic definitions and the properties of the differential transformation method were introduced briefly and the applications of this method on the physical problems were listed in the later chapters. The results of this research illustrate that the differential transformation method can be applied to solve strongly nonlinear systems. It also can be used to solve the eigenvalue problems. The hybrid method of differential transformation method and the finite difference method can be used to solve linear or nonlinear partial differential equations. In usual cases, the differential transformation method consumes only very short computing times. The errors between the simulation results and the analytical solutions were very small. The differential transformation method is a useful tool in solving linear and nonlinear equations.
1. 趙家奎, 微分轉換及其在電路中的應用, 華中理工大學出版社, 1986.
2. C.L. Chen, Y.C. Liu, Solution of two-boundary-value problems using the differential transformation method, Journal of Optimization Theory and Application ,vol.99 ,pp. 23-35, 1998.
3. M.J. Jang, C.L. Chen, Y.C. Liu, Two-dimensional differential transform for partial differential equations, Applied Mathematics and Computation vol.121, pp. 261-270, 2001.
4. C.K. Chen, S.H. Ho, Application of Differential Transformation to Eigenvalue Problem, Applied Mathematics and Computation, Vol.79, pp. 173-188, 1996.
5. C.K. Chen, S.H. Ho, Free Vibration Analysis of non-uniform Timoshenko Beams Using Differential Transform, Applied Mathematical Modeling, Vol.22, No.4-5, pp. 219-234, 1998a.
6. L.T. Yu, C.K. Chen, The Solution of the Blasius Equation by the Differential Transformation Method, Math. Comput. Modeling Vol. 28, No. 1, pp. 101-111,1998.
7. L.T. Yu, C.K. Chen, Application of Taylor transformation to Optimize Rectangular Fins with Variable Thermal Parameters, Applied Mathematical Modeling, vol.22, pp. 11-21, 1998.
8. J. S. Chiou, J. R. Tzeng, Application of the Taylor Transform to Nonlinear Vibration Problems, Trans. ASME, J. of Vibration and Acoustics, Vol. 118, pp. 83-87, 1996.
9. 何星輝著, 微分轉換於自旋、預扭、承受軸向負載Timoshenko 樑振動問題之研究, 國立成功大學機械工程學系博士論文, 1998
10. A. H. Nayfeh, Perturbation Methods, New York: John Wiley, 1973.
11. F. Lakrad, M.Belhaq, Periodic Solutions of Strongly Non-linear Oscillators by the Multiple Scales Method, Journal of Sound and Vibration, vol.258(4), pp. 677-700, 2002.
12. H. Qiao, Q. S. Li, G. Q. Li, Torsional Vibration of Non-Uniform Shafts Carrying an Arbitrary Number of Rigid Disks, Journal of Vibration and Acoustics, vol. 124, October 2002.
13. Martinus Th. Van Genuchten, Analytical Solutions for Chemical Transport with Simultaneous Adsorption, Zero-order Production and First-Order Decay, Journal of Hydrology, vol. 49, pp. 213-233, 1981.
14. Md. Akram Hossain, D. R.Yonge, Simulating advective-dispersive transport in groundwater: an accurate finite difference model, Applied Mathematics and Computation, vol.105, pp. 221-230, 1999.
15. Attilio Maccari, Solitons trapping for the nonlinear Klein-Gordon equation with an external excitation, Chaos, Solitons and Fractals vol.17,pp. 145-154, 2003.
16. Salah M. El-Sayed, The decomposition method for studying the Klein-Gordon equation, Chaos, Solitons and Fractals, vol. 18, pp.1025-1030, 2003.
17. Leonard Meirovitch, Analytical Methods in Vibrations, Macmillan Publishing Co., Inc. New York, 1967.
18. John H. Lienhard, A Heat Transfer Textbook, Prentice-Hall Inc..
19. H. J. Shieh, Application of Differential Transformation Method to solve Differential Equations, Fu-Wen Book Publishing Co., Tainan, Taiwan, 1999. (in Chinese)
20. 陳世欣著, 應用微分轉換法於非線性動態系統之研究, 國立成功大學機械工程學系博士論文, 2003.
21. C. K. Chen, S. H. Ho, Analysis of General Elastically End Restrained Non-uniform Beams Using Differential Transform, Applied Mathematical Modelling, vol. 22, no.4-5, pp. 219-234, 1998a.
22. A. Gelb, W. E.Vander Velde, Multiple-Input Describing Functions and Nonlinear Systems Design, New York, McGraw-Hill Book Company, 1968.
23. S. H. Ho, C. K. Chen, Free Vibration Analysis of Non-Homogeneous Rectangular Membranes Using a Hybrid Method, J. of Sound and Vibration, vol. 233, no. 3, pp. 547-555, 2000.
24. M. Necati Ozisik, Finite Difference Methods in Heat Transfer, CRC Press Inc., 1994.