| 研究生: |
江勝偉 Chiang, Sheng-Wei |
|---|---|
| 論文名稱: |
氣象因子與大氣懸浮微粒含碳量變異關聯性研究 Investigation of relationship between variation of meteorology factors and carbon content in airborne particle |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | SOC 、大氣懸浮微粒 、氣象因子 、碳成份 |
| 外文關鍵詞: | meteorological factor, Particle, Carbon, SOC |
| 相關次數: | 點閱:86 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討大氣懸浮微粒濃度與微粒碳成份,含量(TC、EC、OC、SOC)變化與氣象因素(溫度、相對溼度、平均風速)之相關性。研究工作於仁武及大寮測站以Dichotomous sampler (Dichot) 進行大氣懸浮微粒採樣,配合總有機碳分析儀(TOC)分析微粒濃度及碳成份含量。
研究結果顯示,於高雄地區西南季風時期,熱帶海洋低氣壓致使對流效應及大氣擴散條件良好,懸浮微粒PM2.5平均濃度31.5 µg m-3 ,PM10平均濃度49.5 µg m-3。東北季風時期,大陸冷高壓壟罩造成對流效應及大氣擴散條件不佳,高雄地區PM2.5懸浮微粒平均濃度65.2 µg m-3 ,PM10平均濃度113.8 µg m-3。現場觀測採樣結果顯示高雄地區因季風變換而造成大氣懸浮微粒污染程度上所產生之差異現象。
探討高雄地區南北兩端測站之差異,解析高雄地區上下風測站(仁武及大寮測站)及其氣象因子變化下,對於大氣懸浮微粒中碳成分含量之影響。由數據解析之結果可知,西南季風時期平均風速為1.69 m/s ,碳成分平均濃度15.7 µg m-3 ;東北季風時期平均風速為1.59 m/s ,碳成分平均濃度24.5 µg m-3 ,於不同季風時期大氣懸浮微粒之含碳量(TC) 程度不同,但平均風速皆對懸浮微粒含碳量具有降低程度之影響。
相對溼度對於懸浮微粒中之含碳量,當RH > 65 %時,大氣揮發性有機物可由氣-固相反應生成衍生性有機碳;當RH > 65 %時,大氣相對濕度會增強二次衍生有機碳吸附於大氣懸浮微粒表面作用,使衍生有機碳含量增加。
溫度對於懸浮微粒有機碳(OC) 含量具有影響,其於T >25℃時趨勢顯著,可觀察出T <25℃時,有機碳濃度維持於10~13 µg m-3 ,T > 25℃時,有機碳濃度開始發生衰減之現象,而此現象與觀測地點差異無關。
This study investigates relationship between concentration of atmospheric suspended particle and content of carbon components (TC, EC, OC and SOC) in particle with meteorology factor (temperature, relative humidity, average wind speed). From March, 2006 to December in the same year, suspended particle collection were done by using Dichotomous sampler accompanied with six digit electronic scale and total organic carbon analyzer in Jen-wu and Ta-liao detection station at Kaohsiung area in order to understand suspended particle concentration (wt) and carbon components’ contents.
Taiwan situated in East Asia monsoon region. With monsoon variations, weather shows entirely different change, while Kaohsiung area has being particularly affected. During West South monsoon times, tropical oceanic low pressure creates good convection and atmospheric diffusion conditions. Average concentration of suspended particle PM2.5 in Kaohsiung is about 31.5µg m-3, 10.7µg m-3 for carbon components; average concentration of PM10 is 49.5µg m-3, and 15.7µg m-3 for carbon components. During East North monsoon, surrounding continental cold high pressure causes convection and atmospheric diffusion condition unfavourable. Average concentration of suspended particle PM2.5 is 65.2µg m-3, 17.6µg m-3 for carbon components; 113.8µg m-3 and 24.5µg m-3 for PM10 and carbon components respectively. It shows apparent variations due to monsoon conversion in Kaohsiung area from the above data.
Further more, this study also investigate differences between detection stations situated in south and north of Kaohsiung to analyze effects to carbon component contents in atmospheric suspended particle under up-wind/down-wind detection station and its meteorology variating factors. From analyze results, carbon component (TC) content in atmospheric suspended particle have different level during different monsoon time. However, average wind speed has reduction effect to carbon content in suspended particles. Effects of relative humidity to carbon content in suspended particle can be observed from increasing/decreasing content of secondary organic carbon. When RH is larger than 65, volatile organic compound in atmosphere follows gas to particle reaction and form secondary organic carbon; when RH is larger then 65, relative humidity in atmosphere will increase secondary organic carbon adsorption on suspended particle surface and lead to increase of secondary organic carbon content. Temperature affects contents of organic carbon in suspended particle. This can be observed particularly when temperature equals 25 Celsius degree. When temperature is greater then 25 Celsius degree, concentration of organic carbon starts to decay and this event has no relationship with detection station difference but to temperature variations.
Appel, B. R., Hoffer, E. M., Kothny, E. L., Wall, S. M., Haik, M., and Knights, R. L. “Analysis of Carbonaceous Material in Southern California Atmospheric Aerosols, ” Environ. Sci. Technol. Vol. 13,pp. 98 - 104. (1979)
Barbara J. Turpin; Ho-Jin Lim “Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass” Aerosol Science and Technology 35: 602-610 (2001)
Cess, R. D. “Artic Aerosols: Model Estimates of Interactive Influences upon The Surface-Atmosphere Clear-Sky Radiation Budget” Atmos. Environ. ,Vol.17 ,pp.2555-2564. (1983)
Chow, J. C., J. G. Watson, E. M. Fujita, Z. Lu, and D. R. Lawson, “Temporal and Spatial Variations of PM2.5 and PM10 Aerosol in The Southern California Air Quality Study,” Atmospheric Environment, Vol.28, pp.2061-2080 (1994).
Gray, H. A. , Cass, G. R. , Huntzicker, J. J. , Heyerdahl, E. K. , and Rau, J.A. “Characteristics of Atmospherics Organic and Elemental Carbon Particle Concentrations in Los Angeles”, Environ. Sci. (1986)
Gray, H. A., and G. R. Cass, “Characteristics of Atmosperic Organic and Elemental Carbon Particle Concentrations in Los Angeles,” Environmental Science and Technology, Vol. 20, pp. 580-589 (1986).
Groblicki, P J; Wolff, G T; Countess, R J, “Visibility-Reducing Species in the Denver "Brown Cloud". Relationships Between Extinction and Chemical Composition.” Atmospheric Environment. Vol. 15, no. 12, pp. 2473-2484. (1981)
Hamilaton, R. S., and T. A. Mansfield, “Airborne Particulate Elemental Carbon: Its Source, Transport and Contribution to Dark Smoke And Soiling,” Atmospheric Environment, Vol, 25A, pp. 715-723 (1991).
Hildemann, L. M., R. G. Markowski, and G. R. Cass, “Chemical Composition of Emissions from Urban Sources of Fine Organic Aerosol,” Environmental Science and Technology, Vol. 25, pp. 744-759 (1991).
Imre Salma, Xuguang Chi and Willy Maenhaut, “Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary” Atmospheric Environment, Vol 38, pp 27-36, (2004)
J. J. Cao, S. C. Lee, K. F. Ho, X. Y. Zhang, S. C. Zou, Kochy Fung, Judith C. Chow and John G. Watson “Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period” Atmospheric Environment, Vol 37,pp 1451-1460, (2003)
J. J. Cao, S. C. Lee, K. F. Ho, S. C. Zou, Kochy Fung, Y. Li, John G. Watson and Judith C. Chow, “Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China” Atmospheric Environment, Vol 38, pp 4447-4456, (2004)
Jim J. Lin and Hua-Shan Tai, “Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan” Atmospheric Environment, Vol 35, pp 2627-2636, (2001)
Jim J. Lin and Lien-Chih Lee, “Characterization of the concentration and distribution of urban submicron (PM1) aerosol particles” Atmospheric Environment, Vol 38, pp 469-475, (2004)
Jingchun Duan, Jihua Tan, Dingxi Cheng, Xinhui Bi, Wenjing Deng, Guoying Sheng, Jiamo Fu and
M.H. Wong, “Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China” Atmospheric Environment, Vol 41, pp 2895-2903, (2007)
Kwangsam Na, Aniket A. Sawant, Chen Song and David R. Cocker, “Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California” Atmospheric Environment, Vol 38, pp 1345-1355, (2004)
K.F. Ho, S.C. Lee, J.J. Cao, Judith C. Chow, John G. Watson and Chak K. Chan, “Seasonal variations and mass closure analysis of particulate matter in Hong Kong” Science of The Total Environment, Vol 355, pp 276-287
L. J. Thibodeaux, K. C. Nadler, K. T. Valsaraj and D. D. Reible, “The effect of moisture on volatile organic chemical gas-to-particle partitioning with atmospheric aerosols—competitive adsorption theory predictions” Atmospheric Environment. Part A., Vol 25, pp 1649-1656, (1991)
L. M. Castro, C. A. Pio, Roy M. Harrison and D. J. T. Smith, “Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations” Atmospheric Environment, Vol 33, pp 2771-2781, (1999)
Matthew Russell and D.T.David T. Allen, “Seasonal and spatial trends in primary and secondary organic carbon concentrations in southeast Texas” Atmospheric Environment, Vol 38, pp 3225-3239, (2004)
Monn, C. H., O. Braendli, G. Schaeppi, C. H. Schindler, U. Ackermann-Liebrich, P. H. Leuenbrger, and S. Team, “Particulate Matter <10μm(PM10) and Total Suspended Particulates (TSP) in Urban, Rural andAlpine Air in Switzerland,”Atmospheric Environment, Vol. 29, pp.2565-2573 (1995).
Mueller, P. K., Mosly, R. W., and Pierce, L. B. “Chemical Composition of Pasadena Aerosol by Particle Size and Time of Day- IV. Carbonate and Noncarbonate Carbon Content” J. Colloid Interface Sci., Vol.39, pp.235-239, (1972)
Paul E. Sheehan and Frank M. Bowman, “Estimated Effects of Temperature on Secondary Organic Aerosol Concentrations”, Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
Peter K.K. Louie, John G. Watson, Judith C. Chow, Antony Chen, Della W.M. Sin and Alexis K.H. Lau, “Seasonal characteristics and regional transport of PM2.5 in Hong Kong” Atmospheric Environment, Vol 39, pp 1695-1710, (2005)
Pinto, J. P., R. K. Stevens, R. D. Willis, R. Kellogg, Y. Mamane, J. Novak, J. Santroch, I. Benes, J. Lenicek, and B Bures., “Czech Air Quality Monitoring and Receptor Modeling Study,” Environmental Science and Technology, Vol. 32, pp. 843-854 (1998).
Rogge, W. F., M. A Mazurek, L. M. Hildemann, G. R. Cass, W. F. Rogge, M. A. Mazurek, L. M. Hildemann, G. R. Cass, and B. R. T. Simoneit, “Quantification of Urban Organic Aerosols on a Molecular Level: Identification, Abundance and Seasonal Variation. Proceedings of the Fourth International Conference on Carbonaceous Particles in the Atmosphere,” Atmospheric Environment, Vol. 27A, pp. 1309-1330 (1993).
Ross Strader, Fred Lurmann and Spyros N. Pandis, “Evaluation of secondary organic aerosol formation in winter” Atmospheric Environment, Vol 33, pp 4849-4863, (1999)
Seinfeld J. H., “Atmospheric chemistry and physics of air pollution”, Wiley-interscience, New York., 1986.
Spyros N. Pandis, Anthony S. Wexler and John H. Seinfeld, “Secondary organic aerosol formation and transport - II. Predicting the ambient secondary organic aerosol size distribution” Atmospheric Environment. Part A., Vol 27, pp 2403-2416, (1993)
Turpin, B. J., and Huntzicker, J. J. “Secondary Formation of Organic Aerosol in The Los Angeles Basin: A Descriptive Analysis of Organic and Elemental Carbon Concentration” Atmos. Environ., Vol.25A , pp. 207-215, (1991)
Turpin, B. J., and J. J Huntzicker, “Identification of Secondary Organic Aerosol Episodes and Quantitation of Primary and Secondary Organic Aerosol Concentrations,” Atmospheric Environment, Vol. 29, pp. 3527-3544 (1995).
Wolff, G. T. and R. L. Klimisc, “Soot in the Atmosphere,” In Particulate Carbon: Atmoshperic Life Cycle, pp. 89-109 (1982).
Ying I. Tsai and Chien-Lung Chen, “Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan” Atmospheric Environment, Vol 40, pp 4751-4763, (2006)
Yong P. Kim, K. -C. Moon and Jong Hoon Lee, “Organic and elemental carbon in fine particles at Kosan, Korea” Atmospheric Environment, Vol 34, pp 3309-3317, (2000)
陳德鈞、季研安、林肇信 大氣污染化學 pp35~44 1998
鄭尊仁、雷侑蓁,疾病動物模式奈米微粒毒性探討,2003永續發展科技與政策研討會,2003。
江哲銘、李俊璋,「室內空氣品質標準草案及管制策略探討」,行政院環境保護署研究計劃,1999
郭育良、宋鴻樟,「空氣污染物與心臟疾患住院率及氣喘就醫率之相關性:本土性指標污染物致急性病閾值之分析」,行政院國家科學委員會/環保署科技合作研究計畫成果報告,2000
鄭丁元、郭崇義 「大氣與特定排放源懸浮微粒中有機碳與元素碳之分析比較」,1998年氣膠研討會,1998。