研究生: |
林育民 Lin, Yu-Min |
---|---|
論文名稱: |
利用液相層析串聯質譜儀平行反應監測模式相對定量循環血液中兒茶酚雌激素與血紅蛋白的共價修飾程度 Relative quantification of the conjugation level of catechol estrogen in circulating blood with hemoglobin by LC-MS/MS using parallel reaction monitoring |
指導教授: |
陳淑慧
Chen, Shu-Hui |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 血紅蛋白 、平行反應監測模式 、兒茶酚雌激素 、雌激素化修飾蛋白 |
外文關鍵詞: | Hemoglobin, Parallel Reaction Monitoring (PRM), Catechol Estrogen, Estrogenized Protein |
相關次數: | 點閱:77 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雌二醇代謝物中的4OHE2 (4-hydroxyestradiol),其醌類代謝物E2-3,4-Q為強的親電子劑,會修飾在DNA上並誘導癌症發生,而肥胖也會造成體內雌激素含量增加,進而導致癌症生成。測定蛋白質上雌激素修飾的比例,可以反應出人體在長時間下暴露於雌激素的程度,而血紅蛋白(Hb)在血液中是一種含量極為豐富的蛋白質,再加上在血液中有很長的壽命(約120天),因此研究血紅蛋白與兒茶酚雌激素的共價修飾程度極其重要。
本實驗中透過SDS-PAGE觀察在不同4OHE2濃度影響下誘導血紅蛋白聚集的程度,可以發現當使用1.2 ug以上劑量的4OHE2與200 ug血紅蛋白反應3小時後,血紅蛋白dimer的量會明顯增加,且拖尾的情況也明顯出現。為了觀察血紅蛋白在正常情況下被4OHE2修飾的位點,且不希望蛋白聚集而影響到位點的偵測或誤判,所以透過SDS-PAGE實驗的觀察,我們決定標準品的反應條件為1 ug 4OHE2與200 ug Hb於37℃反應3小時。添加一系列不同濃度的4OHE2與血紅蛋白反應,在完整蛋白質的偵測(Intact Protein Measurement)下,可以看到4OHE2鍵結在Hb上的比例(Conjugated-CE/Hb)隨著4OHE2的濃度增加而有線性的成長,且線性關係極好(R² = 0.9994)。
使用胰凝乳蛋白酶水解標準品,並透過DDA (Data Dependent Acquisition)模式進行分析,偵測到β鏈上的K120與C93兩個位點有4OHE2修飾,之後透過PRM (Parallel Reaction Monitoring)模式進行偵測,並計算各位點在各濃度4OHE2下的共價修飾程度(Conjugation level),做成檢量線後發現K120不具線性關係,且檢量線幾乎呈水平狀態,我們推測此修飾可能為分子量極為靠近4OHE2的其他化合物;C93的Conjugation level則有隨著4OHE2的濃度增加而顯著上升,且也具有好的線性關係(R² = 0.9574),可以確定C93確實是會被4OHE2修飾的位點,另外在C93各濃度的Conjugation level與完整蛋白質測量中測得之Conjugated-CE/Hb做成的關係圖中也可以看到兩個數值具有極高的相關性(R² = 0.9544)。
此外比較了肥胖者與正常者之間C93的Conjugation level差異性。比較圖中可以看到正常者的平均值略高於肥胖者,其p- value為0.810,無顯著差異,但相對標準偏差都很大,除了紅血球本身為複雜樣品,會影響偵測外,低於LOQ也會使測得的數值較為浮動,另外也可能是因為第一重複與第二重複上機時,儀器的狀況有些差異,或是胰凝乳蛋白酶因專一性較差,導致水解蛋白時效率不好等因素所造成,需再進行第三重複樣品測定來確認其相對標準偏差。
此方法仍有可改進之處,但希望此方法的開發,能對肥胖或代謝症候群的人提供醫療診斷或評估上的幫助,並期望此研究能對醫療領域有所貢獻。
The catechol estrogen metabolite of 4OHE2 (4-hydroxyestradiol), E2-3,4-Q, is a strong electrophile, and it can conjugate with DNA and cause cancer. Hemoglobin (Hb) is a good target protein to study because of its high abundance in blood and long lifetime (about 120 days). Measuring the conjugation level of catechol estrogen in circulating blood with hemoglobin can reflect the level that the human body was exposed to 4OHE2 in a long time, so it is important to research the conjugation level of catechol estrogen with hemoglobin. In this experiment, the degree of hemoglobin aggregation which was induced by different concentrations of 4OHE2 was observed by SDS-PAGE. We could see that the amount of dimer increased significantly after incubation at 37 ℃ for 3 hours with 1.2 ug of 4OHE2 and 200 ug of hemoglobin, so we decided the incubation conditions of standard as below:1 ug of 4OHE2 and 200 ug of hemoglobin, 37 ℃ for 3 hours. In intact protein measurement, we could see Conjugated-CE/Hb increased linearly with the concentration addition of 4OHE2 (R² = 0.9994). In the bottom-up analysis, we found K120 and C93 of the β chain could be modified by 4OHE2, but only the conjugation level of C93 could increase linearly with the concentration addition of 4OHE2 (R² = 0.9574), so C93 was a modified site of 4OHE2. Moreover, the Conjugated-CE/Hb and conjugation level of C93 was also found they had a good correlation. Besides, we also compared C93 between obese and normal people, and the average value of the normal people was slightly higher than that of the obese people, and the p-value was 0.810. There was no significant difference, but the relative standard deviation was very large, maybe was due to the sample preparation, enzyme digestion or condition of instrument between two repeats. This method still needed to be improved, I hoped this method can contribute to the medical field.
1. Nelson, L. R.; Bulun, S. E., Estrogen production and action. J Am Acad Dermatol 2001, 45 (3 Suppl), S116-24.
2. Tsuchiya, Y.; Nakajima, M.; Yokoi, T., Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 2005, 227 (2), 115-24.
3. Cui, J.; Shen, Y.; Li, R., Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 2013, 19 (3), 197-209.
4. Samavat, H.; Kurzer, M. S., Estrogen metabolism and breast cancer. Cancer Lett 2015, 356 (2 Pt A), 231-43.
5. Bertelsen, L.; Mellemkjaer, L.; Frederiksen, K.; Kjaer, S. K.; Brinton, L. A.; Sakoda, L. C.; van Valkengoed, I.; Olsen, J. H., Risk for breast cancer among women with endometriosis. Int J Cancer 2007, 120 (6), 1372-5.
6. Pike, M. C.; Ross, R. K., Progestins and menopause: epidemiological studies of risks of endometrial and breast cancer. Steroids 2000, 65 (10-11), 659-64.
7. Khan, A., Premenopausal women and low bone density. Can Fam Physician 2006, 52, 743-7.
8. Latourelle, J. C.; Dybdahl, M.; Destefano, A. L.; Myers, R. H.; Lash, T. L., Estrogen-related and other disease diagnoses preceding Parkinson's disease. Clin Epidemiol 2010, 2, 153-70.
9. Pruthi, S.; Yang, L.; Sandhu, N. P.; Ingle, J. N.; Beseler, C. L.; Suman, V. J.; Cavalieri, E. L.; Rogan, E. G., Evaluation of serum estrogen-DNA adducts as potential biomarkers for breast cancer risk. J Steroid Biochem Mol Biol 2012, 132 (1-2), 73-9.
10. Westbrock, D. A., Estrogen Metabolites in the Etiology of Hormone Related Cancers: Possible Role of Anti-Oxidants in Prevention. Endocrinology&Metabolism International Journal 2017, 4 (3).
11. Zahid, M.; Kohli, E.; Saeed, M.; Rogan, E.; Cavalieri, E., The greater reactivity of estradiol-3,4-quinone vs estradiol-2,3-quinone with DNA in the formation of depurinating adducts: implications for tumor-initiating activity. Chem Res Toxicol 2006, 19 (1), 164-72.
12. Stack, D. E., Identifying the Tautomeric Form of a Deoxyguanosine-Estrogen Quinone Intermediate. Metabolites 2015, 5 (3), 475-88.
13. Zahid, M.; Mondal, B.; LeVan, T. D.; Rogan, E. G., Estrogen Metabolism in African-American Women with and without Breast Cancer: A Pilot Study. Chem Res Toxicol 2019, 32 (1), 190-194.
14. Park, S.-A., Catechol Estrogen 4-Hydroxyestradiol is an Ultimate Carcinogen in Breast Cancer. Biomedical Science Letters 2018, 24 (3), 143-149.
15. Fang, C. M.; Ku, M. C.; Chang, C. K.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, S. H., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicol Sci 2015, 148 (2), 433-42.
16. Ku, M. C.; Fang, C. M.; Cheng, J. T.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, C. C.; Tai, J. H.; Chen, S. H., Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Sci Rep 2016, 6, 28804.
17. Liang, H. C.; Liu, Y. C.; Chen, H.; Ku, M. C.; Do, Q. T.; Wang, C. Y.; Tzeng, S. F.; Chen, S. H., In Situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens. J Proteome Res 2018, 17 (8), 2590-2599.
18. Cleary, M. P.; Grossmann, M. E., Minireview: Obesity and breast cancer: the estrogen connection. Endocrinology 2009, 150 (6), 2537-42.
19. Feng, Y.-H., The association between obesity and gynecological cancer. Gynecology and Minimally Invasive Therapy 2015, 4 (4), 102-105.
20. Dutta, A.; Sharma-Walia, N., Curbing Lipids: Impacts ON Cancer and Viral Infection. Int J Mol Sci 2019, 20 (3).
21. Lorincz, A. M.; Sukumar, S., Molecular links between obesity and breast cancer. Endocr Relat Cancer 2006, 13 (2), 279-92.
22. Nagel, S. C.; vom Saal, F. S., Endocrine control of sexual differentiation: effects of the maternal–fetal environment and endocrine disrupting chemicals. In Advances in Molecular and Cell Biology, Elsevier: 2004; Vol. 34, pp 15-37.
23. Blair, I. A., Analysis of estrogens in serum and plasma from postmenopausal women: past present, and future. Steroids 2010, 75 (4-5), 297-306.
24. Denver, N.; Khan, S.; Homer, N. Z. M.; MacLean, M. R.; Andrew, R., Current strategies for quantification of estrogens in clinical research. J Steroid Biochem Mol Biol 2019, 192, 105373.
25. Santen, R. J.; Lee, J. S.; Wang, S.; Demers, L. M.; Mauras, N.; Wang, H.; Singh, R., Potential role of ultra-sensitive estradiol assays in estimating the risk of breast cancer and fractures. Steroids 2008, 73 (13), 1318-21.
26. Robles, J.; Marcos, J.; Renau, N.; Garrostas, L.; Segura, J.; Ventura, R.; Barcelo, B.; Barcelo, A.; Pozo, O. J., Quantifying endogenous androgens, estrogens, pregnenolone and progesterone metabolites in human urine by gas chromatography tandem mass spectrometry. Talanta 2017, 169, 20-29.
27. Santen, R. J.; Demers, L.; Ohorodnik, S.; Settlage, J.; Langecker, P.; Blanchett, D.; Goss, P. E.; Wang, S., Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids 2007, 72 (8), 666-71.
28. Khedr, A.; Alahdal, A. M., Liquid chromatography-tandem mass spectrometric analysis of ten estrogen metabolites at sub-picogram levels in breast cancer women. J Chromatogr B Analyt Technol Biomed Life Sci 2016, 1031, 181-188.
29. Huang, H. J.; Chiang, P. H.; Chen, S. H., Quantitative analysis of estrogens and estrogen metabolites in endogenous MCF-7 breast cancer cells by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011, 879 (20), 1748-56.
30. Jaque, J.; Macdonald, H.; Brueggmann, D.; Patel, S. K.; Azen, C.; Clarke, N.; Stanczyk, F. Z., Deficiencies in immunoassay methods used to monitor serum Estradiol levels during aromatase inhibitor treatment in postmenopausal breast cancer patients. Springerplus 2013, 2 (1), 5.
31. Handelsman, D. J.; Newman, J. D.; Jimenez, M.; McLachlan, R.; Sartorius, G.; Jones, G. R., Performance of direct estradiol immunoassays with human male serum samples. Clin Chem 2014, 60 (3), 510-7.
32. Stanczyk, F. Z.; Jurow, J.; Hsing, A. W., Limitations of direct immunoassays for measuring circulating estradiol levels in postmenopausal women and men in epidemiologic studies. Cancer Epidemiol Biomarkers Prev 2010, 19 (4), 903-6.
33. Wooding, K. M.; Hankin, J. A.; Johnson, C. A.; Chosich, J. D.; Baek, S. W.; Bradford, A. P.; Murphy, R. C.; Santoro, N., Measurement of estradiol, estrone, and testosterone in postmenopausal human serum by isotope dilution liquid chromatography tandem mass spectrometry without derivatization. Steroids 2015, 96, 89-94.
34. Zhang, Q.; Han, L.; Wang, J.; Lin, H.; Ke, P.; Zhuang, J.; Huang, X., Simultaneous quantitation of endogenous estrone, 17beta-estradiol, and estriol in human serum by isotope-dilution liquid chromatography-tandem mass spectrometry for clinical laboratory applications. Anal Bioanal Chem 2017, 409 (10), 2627-2638.
35. Chokkathukalam, A.; Kim, D. H.; Barrett, M. P.; Breitling, R.; Creek, D. J., Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis 2014, 6 (4), 511-24.
36. Higashi, T.; Ogawa, S., Chemical derivatization for enhancing sensitivity during LC/ESI-MS/MS quantification of steroids in biological samples: a review. J Steroid Biochem Mol Biol 2016, 162, 57-69.
37. Marengo-Rowe, A. J., Structure-function relations of human hemoglobins. Proc (Bayl Univ Med Cent) 2006, 19 (3), 239-45.
38. Preston, G. W.; Phillips, D. H., Protein Adductomics: Analytical Developments and Applications in Human Biomonitoring. Toxics 2019, 7 (2).
39. Ghosh, A.; Banerjee, S.; Mitra, A.; Muralidharan, M.; Roy, B.; Banerjee, R.; Mandal, A. K.; Chatterjee, I. B., Interaction of p-benzoquinone with hemoglobin in smoker's blood causes alteration of structure and loss of oxygen binding capacity. Toxicol Rep 2016, 3, 295-305.
40. Wang, S. H.; Wang, T. F.; Wu, C. H.; Chen, S. H., In-depth comparative characterization of hemoglobin glycation in normal and diabetic bloods by LC-MSMS. J Am Soc Mass Spectrom 2014, 25 (5), 758-66.
41. Carlsson, H.; von Stedingk, H.; Nilsson, U.; Tornqvist, M., LC-MS/MS screening strategy for unknown adducts to N-terminal valine in hemoglobin applied to smokers and nonsmokers. Chem Res Toxicol 2014, 27 (12), 2062-70.
42. Carlsson, H.; Motwani, H. V.; Osterman Golkar, S.; Tornqvist, M., Characterization of a Hemoglobin Adduct from Ethyl Vinyl Ketone Detected in Human Blood Samples. Chem Res Toxicol 2015, 28 (11), 2120-9.
43. Mitra, A.; Mandal, A. K., Conjugation of para-benzoquinone of Cigarette Smoke with Human Hemoglobin Leads to Unstable Tetramer and Reduced Cooperative Oxygen Binding. J Am Soc Mass Spectrom 2018, 29 (10), 2048-2058.
44. Cho, W. C., Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer 2007, 6, 25.
45. Cho, W. C., Proteomics technologies and challenges. Genomics Proteomics Bioinformatics 2007, 5 (2), 77-85.
46. Awad, H.; Khamis, M. M.; El-Aneed, A., Mass Spectrometry, Review of the Basics: Ionization. Applied Spectroscopy Reviews 2015, 50 (2), 158-175.
47. Chetwynd, A. J.; David, A., A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage. Talanta 2018, 182, 380-390.
48. Demartini, D. R.; Ribeiro, D., A Short Overview of the Components in Mass Spectrometry Instrumentation for Proteomics Analyses
Tandem Mass Spectrometry - Molecular Characterization.
49. Haag, A. M., Mass Analyzers and Mass Spectrometers. Adv Exp Med Biol 2016, 919, 157-169.
50. Clarke, W., Chapter 1 - Mass spectrometry in the clinical laboratory: determining the need and avoiding pitfalls. In Mass Spectrometry for the Clinical Laboratory, Nair, H.; Clarke, W., Eds. Academic Press: San Diego, 2017; pp 1-15.
51. Eliuk, S.; Makarov, A., Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu Rev Anal Chem (Palo Alto Calif) 2015, 8, 61-80.
52. Xie, F.; Liu, T.; Qian, W. J.; Petyuk, V. A.; Smith, R. D., Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem 2011, 286 (29), 25443-9.
53. Catherman, A. D.; Skinner, O. S.; Kelleher, N. L., Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 2014, 445 (4), 683-93.
54. Kellie, J. F.; Tran, J. C.; Lee, J. E.; Ahlf, D. R.; Thomas, H. M.; Ntai, I.; Catherman, A. D.; Durbin, K. R.; Zamdborg, L.; Vellaichamy, A.; Thomas, P. M.; Kelleher, N. L., The emerging process of Top Down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. Mol Biosyst 2010, 6 (9), 1532-9.
55. Kall, L.; Vitek, O., Computational mass spectrometry-based proteomics. PLoS Comput Biol 2011, 7 (12), e1002277.
56. Baiwir, D.; Nanni, P.; Müller, S.; Smargiasso, N.; Morsa, D.; De Pauw, E.; Mazzucchelli, G.; de Almeida, A. M., Gel-Free Proteomics
Proteomics in Domestic Animals: from Farm to Systems Biology. 2018; p 55-101.
57. Singh, S. A.; Aikawa, E.; Aikawa, M., Current Trends and Future Perspectives of State-of-the-Art Proteomics Technologies Applied to Cardiovascular Disease Research. Circ J 2016, 80 (8), 1674-83.
58. Ronsein, G. E.; Pamir, N.; von Haller, P. D.; Kim, D. S.; Oda, M. N.; Jarvik, G. P.; Vaisar, T.; Heinecke, J. W., Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. J Proteomics 2015, 113, 388-99.
59. Vidova, V.; Spacil, Z., A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal Chim Acta 2017, 964, 7-23.
60. Thompson, M.; Ellison, S. L. R., A review of interference effects and their correction in chemical analysis with special reference to uncertainty. Accreditation and Quality Assurance 2005, 10 (3), 82-97.
61. Gergov, M.; Nenonen, T.; Ojanpera, I.; Ketola, R. A., Compensation of matrix effects in a standard addition method for metformin in postmortem blood using liquid chromatography-electrospray-tandem mass spectrometry. J Anal Toxicol 2015, 39 (5), 359-64.
62. Janecki, D.; Reilly, J., Denaturation of metalloproteins with EDTA to facilitate enzymatic digestion and mass fingerprinting. Rapid Communications in Mass Spectrometry 2005, 19 (10), 1268-1272.
63. Nagae, M.; Morita-Matsumoto, K.; Arai, S.; Wada, I.; Matsumoto, Y.; Saito, K.; Hashimoto, Y.; Yamaguchi, Y., Structural change of N-glycan exposes hydrophobic surface of human transferrin. Glycobiology 2014, 24 (8), 693-702.
64. Grigoryan, H.; Edmands, W.; Lu, S. S.; Yano, Y.; Regazzoni, L.; Iavarone, A. T.; Williams, E. R.; Rappaport, S. M., Adductomics Pipeline for Untargeted Analysis of Modifications to Cys34 of Human Serum Albumin. Analytical Chemistry 2016, 88 (21), 10504-10512.