| 研究生: |
吳鉉忠 Wu, Hsuan-Chung |
|---|---|
| 論文名稱: |
壓電式微液滴噴射數學模擬系統
之開發與實驗研究 Development of a Mathematical Model for Piezoelectric Micro-droplet Ejection and Its Experimental Study |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 噴墨列印製程 、微液滴 、流體體積法 、壓電式噴墨 |
| 外文關鍵詞: | micro-droplet, piezoelectric inkjet, inkjet printing, volume of fluid, piecewise linear interface calculation |
| 相關次數: | 點閱:63 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對工業製造技術對自動化、微小化、降低成本、減少環境污染的要求與趨勢,噴墨列印在許多工業製造技術上,成為極具吸引力之材料分配與成形的替代技術。在建立一可模擬壓電式噴墨系統於噴射過程中之液滴生成、飛行與擊打到標的之目標下,本研究成功開發一套三維電腦輔助分析系統。
本研究之模擬系統在速度與壓力的求解上是使用SOLA (SOLution Algorithm) 數值技術,在界面重建及液體體積的傳遞問題上採用PLIC (Piecewise Linear Interface Calculation) 並耦合VOF (Volume of Fluid) 法來計算,在表面張力的處理上是使用CSF (Continuum Surface Force) 模式,壓電材料經受電壓影響而產生變形所造成的噴嘴壓力隨時間變化關係則是採用聲波傳遞理論處理。實驗上所採用的噴墨頭其驅動方式為壓電式-收縮管型。使用CCD (Charge Couple Device) Camera擷取液滴影像,控制LED (Light Emitting Diodes) 發光的時間以獲取不同時間的液滴生成、飛行過程之影像。藉由不同時間所擷取的液滴影像來計算液滴的飛行距離與速度。
模擬系統以壓電式-收縮管型噴墨頭為載具,模擬液滴生成、飛行與擊打到標的之完整過程,並以實驗觀測與量測結果來驗證模擬系統的準確性。模擬與實驗結果在液滴型態、斷裂時間、飛行距離與液滴體積四方面具有良好的一致性。在模擬系統被驗證可靠之後,再據以進行數值實驗來評估物性參數 (噴液的表面張力與黏滯係數) 與製程參數 (壓力波型態與噴墨頭長度) 對液滴噴射行為的影響。
在實驗方面為探討壓電式微液滴噴射裝置在單脈衝電壓型態下液滴的生成及噴射行為。研究的對象包括去離子水及乙二醇兩種液體,實驗結果並結合壓力波傳導理論來探討操作頻率、正電壓維持時間與電壓大小對液滴體積及速度之影響。
The development of manufacturing technologies has been driven by the need for automation, miniaturization, and the reduction of costs and environmental impact. To meet these needs, ink-jet printing technology is an increasingly attractive alternative for the distribution and patterning of material in a wide variety of applications. A three-dimensional computer-aided analysis system has been developed in this study to simulate the formation, ejection, and impact of a liquid droplet in a squeeze mode piezoelectric inkjet printing device.
The computer simulation system is based on a SOLA (Light Emitting Diode) scheme for the solution of velocity and pressure fields. It is coupled with VOF (Volume of Fluid) and PLIC (Piecewise Linear Interface Calculation) techniques for the transport of volume fractions of liquid in the cells, and construction of the interface. For the treatment of surface tension effects, a CSF (Continuum Surface Force) model is employed. The pressure at the nozzle inlet, which is related to the applied voltage, imposed on the simulation system is determined by the propagation theory of acoustic waves. For the experimental setup, a squeeze mode piezoelectric print head is employed. By coordinating an LED (Light Emitting Diodes) flash with droplet ejection, a CCD (Charge Couple Device) camera could be used to capture images of the droplets at different points in the formation and ejection process. These images were then used to estimate the volume and velocity of the droplets.
The simulation system simulated the formation, ejection and impact of a micro-droplet on the substrate for a piezoelectric inkjet printing device as well as to validate the mathematical model by comparing the simulated results with experimental observations/measurements. The simulated results are rather consistent with the experimental observations in terms of droplet morphology, breaking time, flight distance, and droplet volume. The effects of ink physical properties (including surface tension and viscosity) and operation characteristics (including pressure wave type and cavity length) on the ejection behavior of the droplet are presented by the validated simulation system.
In the experimental study, the formation and ejection behavior of droplets created by a squeeze mode piezoelectric ink-jet printing device using a single pulse voltage pattern are investigated. The test liquids are water and ethylene glycol. The experimental results and acoustic wave theory are used to discuss the effects of operating frequency, positive voltage keeping time and pulse voltage magnitude on the volume and velocity of the droplets.
1. J. Heinzl and C. H. Hertz, “Ink-Jet Printing”, Advances in Electronics and Electron Physics, Vol. 65, p. 91-171, 1985.
2. L. P. Hue, “Progress and Trends in Ink-jet Printing Technology”, Journal of Imaging science and Technology, Vol. 42, No. 1, p. 49-62, 1998.
3. 殷孟雲,“噴墨印表機設計原理”, 全華科技圖書股份有限公司, 2001.
4. Q. Liu, “High Precision Solder Droplet Printing Technology and the State-of-the-Art”, Journal of Materials Processing Technology, Vol. 115, p. 271-283, 2001.
5. M. Grove, D. Hayes, R. Cox and D. Wallace, “Color Flat Panel Manufacturing Using Ink Jet Technology”, in: Proceeding of Display Works’99, San Jose, February 1999.
6. K. Yamaguchi, K. Sakai, T. Yamanaka and T. Hirayama, “Generation of Three-Dimensional Micro Structure Using Metal Jet”, Precision Engineering, Vol. 24, p. 2-8, 2000.
7. S. H. Lamb, Hydrodynamics, 6th ed., Dover Publications, Inc., New York, p. 471, 1945.
8. L. Rayleigh, “On the Instability of a Cylinder of Viscous Liquid under Capillary Force”, Philosophical Magazine, Vol. 34, p. 145, 1892.
9. C. A. Bruce, “Dependence of Ink Jet Dynamics on Fluid Characteristics”, IBM Journal of Research and Development, Vol. 20, p. 258-270, 1976.
10. W. T. Pimbley and H. C. Lee, “Satellite Droplet Formation in a Liquid Jet”, IBM Journal of Research and Development, Vol. 21, p. 21-30, 1977.
11. N. Bugdayci, D. B. Bogy and F. E. Talke, “Axisymmetric Motion of Radially Polarized Piezoelectric Cylinders Used in Ink Jet Printing”, IBM Journal of Research and Development, Vol. 27, No. 2, p. 171-180, 1983.
12. D. B. Bogy and F. E. Talke, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Inkjet Devices”, IBM Journal of Research and Development, Vol. 28, No. 3, p. 314-321, 1984.
13. P. H. Chen, H. Y. Peng, H. Y. Liu, S. L. Chang, T. I. Wu and C. H. Cheng, “Pressure Response and Droplet Ejection of a Piezoelectric Inkjet Printhead”, International Journal of Mechanical Sciences, Vol. 41, p. 235-248, 1999.
14. D. B. Bogy, S. J. Shine and F. E. Talke, “Finite Difference Solution of the Cosserat Fluid Jet Equations”, Journal of Computational Physics, Vol. 38, p. 294-326, 1980.
15. J. E. Fromm, “Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets,” IBM Journal of Research and Development, Vol. 28, p. 323-333, 1984.
16. T. W. Shield, D. B. Bogy and F. E. Talke, “Drop Formation by DOD Ink-Jet Nozzles: A Comparison of Experiment and Numerical Simulation”, IBM Journal of Research and Development, Vol. 31, No. 1, p. 96-110, 1987.
17. A. Asai, “Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer”, Journal of Fluids Engineering, Vol. 114, p. 638-641, 1992.
18. J. Fukai, Y. Shiiba, T. Yamamoto and O. Miyatake, “Wetting Effects on the Spreading of a Liquid Droplet Colliding with a Flat Surface: Experiment and Modeling”, Physics of Fluids, Vol. 7, No. 2, p. 236-247, 1995.
19. N. Hatta, H. Fujimoto and H. Takuda, “Deformation Process of a Water Droplet Impinging on a Solid Surface”, Transactions of the ASME Journal of Fluids Engineering, Vol. 117, p. 394-401, 1995.
20. M. Pasandideh-Fard, Y. M. Qiao, S. Chandra and J. Mostaghimi, “Capillary Effects during Droplet Impact on a Solid Surface”, Physics of Fluids, Vol. 8, No. 3, 1996.
21. J. T. Yeh, “A VOF-FEM and Coupled Inkjet Simulation”, 2001 ASME Fluids Engineering Division Summer Meeting, New Orleans, Louisiana, 2001.
22. T. M. Liou, K. C. Shih, S. W. Chau and S. C. Chen, “Three Dimensional Simulations of the Droplet Formation during the Inkjet Printing Process”, International Communications in Heat and Mass Transfer, Vol. 29, No. 8, p. 1109-1118, 2002.
23. J. U. Brackbill, D. B. Kothe and C. Zemach, “A Continuum Method for Modeling Surface Tension”, Journal of Computational Physics, Vol. 100, p.335-354, 1992.
24. D. B. Kothe, R. C. Mjolsness and M. D. Torrey, “RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces”, LA-12007-MS, April 1994.
25. C. W. Hirt, B. D. Nichols and R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries”, Tech. Report LA-8355, Los Alamos Scientific Laboratory, 1980.
26. C. W. Hirt and B. D. Nichols, ”Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, Journal of Computational Physics, No. 39, p. 201-225, 1981.
27. W. F. Noh and P. R. Woodward, “SLIC (Simple Line Interface Method)”, Lecture Notes in Physics, Vol. 59, p. 330, 1976.
28. D. L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortion”, in Numerical Methods for Fluid Dynamics, edited by K. W. Morton and M. J. Baines, Academic Press, p. 273-285, 1982.
29. D. Gueyffier, J. Li, A. Nadim, R. Scardovelli and S. Zaleski, “Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-dimensional Flows”, Journal of Computational Physics, Vol. 152, p.423-456, 1999.
30. R. Scardovelli and S. Zaleski, “Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids”, Journal of Computational Physics, Vol. 164, p.228-237, 2000.
31. W. J. Rider and D. B. Kothe, “Reconstructing Volume Tracking”, Journal of Computational Physics, Vol. 141, p.112-152, 1998.
32. C. W. Hirt and J. P. Shannon, ”Free-Surface Stress Conditions for Incompressible-Flow Calculations”, Journal of Computational Physics, Vol. 2, p. 403-411, 1968.
33. M. F. Tome and S. Mckee, “GENSMAC: A Computational Marker and Cell Method for Free Surface Flow in General Domains”, Journal of Computational Physics, Vol. 110, p. 171-186, 1994.
34. S. Chen, D. B. Johnson and P. E. Raad, “Velocity Boundary Conditions for the Simulation of Free Surface Fluid Flow”, Journal of Computational Physics, Vol. 116, p. 262-276, 1995.
35. A. Castello, M. F. Tome, C. N. L. Cesar, S. Mckee and J. A. Cuminato, “Freeflow: an Integrated Simulation System for Three-Dimensional Free Surface Flows”, Computing and Visualization in Science, Vol. 2, p. 199-210, 2000.
36. M. F. Tome, A. C. Filho, J. A. Cuminato, N. Mangiavacchi and S. McKee, “GENSMAC3D: a Numerical Method for Solving Unsteady Three-Dimensional Free Surface Flows”, International Journal for Numerical Methods in Fluids, Vol. 37, p. 747-796, 2001.
37. C. W. Hirt, B. D. Nichols and N. C. Romero, “SOLA—A Numerical Transient Solution Algorithm for Fluid Flows”, Technical Report LA-5852, Los Alamos Scientific Laboratory, 1975.
38. F. H. Harlow and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface”, Physics of Fluids, Vol. 8, p. 2182-2189, 1965.
39. Y. Tian, R. G. Holt and R. E. Apfel, “Investigation of Liquid Surface Rheology of Surfactant Solutions by Droplet Shape Oscillations: Experiments”, Journal of Colloid and Interface Science, Vol. 187, p. 1-10, 1997.
40. V. Mehdi-Nejad, J. Mostaghimi and S. Chandra, “Air bubble entrapment under an impacting droplet”, Physics of Fluids, Vol. 15, No. 1, p. 173-183, 2003.
41. D. L. Youngs, “An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code”, Technical Report 44/92/35, AWRE, 1984.
42. J. E. Pilliod Jr., ”An Analysis of Piecewise Linear Interface Reconstruction Algorithm for Volume-of-Fluid Methods”, master’s thesis, University of California at Davis, 1992.
43. B. Swartz, “The Second-order Sharpening of Blurred Smooth Borders”, Mathematics of Computation, Vol. 52, p. 675, 1989.
44. E. Aulisa, S. Manservis, R. Scardovelli and S. Zaleski, “A Geometrical Area-preserving Volume-of-Fluid Advection Method”, Journal of Computational Physics, Vol. 192, p. 355-364, 2003.