| 研究生: |
林家帆 Lin, Chia-Fan |
|---|---|
| 論文名稱: |
覆晶球柵陣列組合體之熱機械行為分析 Analysis of Thermal mechanical behaviors for Flip-Chip Ball Grid Array packaging |
| 指導教授: |
吳俊煌
Wu, Gien-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 覆晶封裝 、有限元素分析 、無鉛錫球 、疲勞壽命 |
| 外文關鍵詞: | Flip-Chip BGA, finite element method, lead-free solder joints, fatigue life |
| 相關次數: | 點閱:87 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要利用有限元素分析軟體ANSYS14.0來模擬覆晶封裝組合體FCBGA於加速溫度循環中錫球的熱機械行為與疲勞壽命。
在本模擬中,首先利用ANSYS建立模型,並設定各元件材料參數完成網格化,由於錫球為非線性黏塑材料,因此以Anand’s model來描述錫球的變化行為,而其他材料視為彈性以提高求解效率,之後施以加速溫度循環負載,觀察錫球在負載過程中的塑性應變變化(plastic strain range),並將結果代入Coffin-Manson疲勞壽命預測公式來探討錫球的可靠度。
在結果與討論中分成三大部分,第一部分探討含鉛錫球(60Sn40Pb)的分析結果。首先觀察各個錫球的應力、應變與翹曲分布,找出發生最大von Mises應變的關鍵錫球,再分析關鍵錫球於熱負載過程中應力與應變的變化,藉由Coffin-Manson equation,計算出含鉛錫球疲勞壽命。
第二部分為參數設計,考慮三種不同型組合體對錫球疲勞壽命的影響,以及不同高分子組件與散熱組件的參數設計對錫球疲勞壽命的影響。我們可以藉由分析結果得知哪些因素對FCBGA錫球疲勞壽命影響顯著。
第三部分為含鉛與無鉛錫球壽命的比較,觀察不同無鉛材料的關鍵錫球在整個熱負載過程中的應力、應變還有遲滯迴圈的變化,並比較含鉛與無鉛錫球的疲勞壽命。
This paper uses finite element software ANSYS14.0 to analyze the Flip-Chip Ball Grid Array packaging (FCBGA) under accelerated thermal cycling loading. We will observe the thermal mechanical behaviors of the solder balls and discuss the fatigue life of the FCBGA.
In this simulation, we first use ANSYS to establish the FCBGA model, and apply different materials to each component to finish meshing. For the nonlinearly viscoplastic property of the solder ball, the Anand’s model is used to describe the deformation of the solder ball. However, to increase the solving efficiency, linearly elastic materials can be used to describe other components. After applying accelerated thermal cycling (ATC) loads, we observe the plastic strain range of the solder ball during ATC loads. Eventually, we use the Coffin-Manson equation to predict the fatigue life and reliability of the solder ball.
Results and Discussion is divided into three parts, the first part is about the tin-lead solder ball (60Sn40Pb) analysis results. First, we observe the stress, strain and warpage distribution of each solder ball, to figure out the critical solder ball with the maximum von Mises strain, and then we analyze the stress and strain of the critical solder ball during the whole ATC loads. Eventually the Coffin-Manson equation is used to calculate the fatigue life of the solder ball.
The second part is the parameters design considering the effect of the three types of different FCBGA assembly on the fatigue life of solder ball, and the effect of different polymer components and heat spreader assembly on the fatigue life of solder balls. Analyzing the results we can understand what factors affect the fatigue life of solder ball FCBGA significantly.
The third part is the fatigue life comparison between tin-lead and lead-free solder balls. We focus on the stress, strain and hysteresis loop plot of the critical solder ball, and then compare the fatigue life between the tin-lead and lead-free materials.
[1] 鍾文仁、陳佑任,“IC封裝製程與CAE應用(修訂版)”,全華科技圖書股份有限公司,2005年
[2] 許明哲,“先進微電子3D-IC構裝”,五南圖書,2011年
[3] S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, and B. Michel, “Constitutive Behaviour of Lead-free Solders vs. Lead-Containing Solders-Experiments on Bulk Specimens and Flip-Chip Joints”, Electronic Components and Technology Conference, pp.890-902, 2001.
[4] A. Schubert, R. Dudek, H. Walter, E. Jung, A. Gollhardt, B. Michel, and H. Reichl, ”Reliability Assessment of Flip-Chip Assemblies with Lead-free Solder Joints”, IEEE Electronic Component and Technology Conference, pp.1246-1255, 2002.
[5] R. Dudek, H. Walter, R. Doering, and B. Michel, “Thermal fatigue modelling for SnAgCu and SnPb solder joints”, IEEE Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, pp.557-564, 2004.
[6] A. Yeo, C. Lee, J. H. L. Pang, “Flip Chip Solder Joint Fatigue Analysis Using 2D and 3D FE Models, ” The 5th Thermal and Mechanical Simulation and Expertments in Micro-electronics and Micro-Systems Conference, pp.549-555, 2004.
[7] K. Tunga, K. Kacker, R.V. Pucha, S.K. Sitaraman, “Accelerated thermal cycling: is it different for lead-free solder? ” , IEEE Electronic Components and Technology Conference, Vol.2, pp.1579-1585, 2004.
[8] Q. Yan, L. Rex, R.G. Hamid, S. Polina, K.S. Jan, “Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints”, Microelectronics Reliability, Vol.46, pp.574-588, 2006.
[9] A. Syed, “Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints”, Electronic Components and Technology Conference, Vol.1, pp.737-746, 2004.
[10] J. Lau and W. Dauksher, “Effects of Ramp-Time on the Thermal-Fatigue Life of SnAgCu Lead-Free Solder Joints”, Electronic Components and Technology Conference, pp.1292-1298, 2005.
[11] H. C. Tsai, W. R. Jong and S. H. Peng, “The Comparisons of IC Packages with / without Underfill of the Thermo-Mechanical Characteristics”, pp.1444-1448, ANTEC, 2007.
[12] N. E. Dowing, “Mechanical Behavior of Materials”, Prentice-Hall, N.J., 1993.
[13] S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, B. Michel,“Constitutive Behavior of Lead-free Solders vs. Lead containing Solders-Experiments on Bulk Specimens and Flip Chip Joints”, IEEE Electronic Components and Technology Conference, 2001.
[14] L. Anand,“Constitutive Equation for The Rate-Dependent Deformation of Metals at Elevated Temperature”, Transactions of The ASME, Vol.104, pp.12-17, 1982.
[15] R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation”, IEEE Electronic Components and Technology Conference, pp. 1048-1058, 2000.
[16] M. Amagai, M. Watanabe , M. Omiya, K. Kishimoto, T. Shibuya, “Mechanical characterization of Sn–Ag-based lead-free solders”, Microelectronics Reliability, Vol.42, pp.951-966, 2002.
[17] J. Zhu, “Effects of Anchor Pads in Micro-Scale BGA”, IEEE Electronic Components and Technology Conference, pp. 1731-1736, 2000.
[18] B. Rodgers, B. Flood, J. Punch, F. Waldron, “Experimental Determinatioio and Finite Element Model Validation of the Anand Viscoplasticity Model Constants for SnAgCu”, IEEE Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 490 – 496, 2005.
[19] W.W. Lee, L.T. Nguyen, G.S. Selvaduray, “ Solder joint fatigue model: review and applicability to chip scale packages”, Microelectronics Reliability, Vol.40, pp.231-244, 2000.
[20] L.F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal,” Trans. ASME, Vol. 76, pp. 931-950, 1954.
[21] S.S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, pp. 9-57, 1953.
[22] H.D. Solomon, “Low-Cycle Fatigue of 60Sn/40Pb Solder”, ASTM Special Technical Publication, Philadelphia, Pa, USA, pp. 342-370, 1985.
[23] E.C. Cutiongco, S. Vaynman, M.E. Fine, and D.A. Jeannotte, “Isothermal Fatigue of 63Sn-37Pb Solder”, Journal of Electronic Packaging, Vol.112, pp.110-114, 1990.
[24] W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-6, No. 3, pp. 52-57, 1983.
[25] H.D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-9, No. 4, pp.423-431, 1986.
[26] J. P. Clech, “BGA, Flip-Chip and CSP Solder Joint Reliability: of the Importance of Model Validation”, InterPack, pp.112-121, 1999.
[27] J.H.L. Pang, P.T.H. Low, B.S. Xiong, “Lead-free 95.5Sn-3.8Ag-0.7Cu Solder Joint Reliability Analysis For Micro-BGA Assembly”, IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, Vol.2, pp.131-136, 2004.
[28] T. Takahashi, S. Hioki, I. Shohji, O. Kamiya, “Fatigue Damage Evaluation by Surface Feature for Sn–3.5Ag and Sn–0.7Cu Solders”, Materials Transactions, Vol. 46, No. 11, pp. 2335-2343, 2005.
[29] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders”, Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, pp. 456-465, 2002.
[30] Temperature Cycling, “JESD22 A104-D”, JEDEC, 2009.
[31] K.W. Shim, and W.Y. Lo, “Solder Fatigue Modeling of Flip-Chip Bumps in Molded Packages”, IEEE International Electronic Manufacturing Technology, pp. 109-114, 2006.
[32] K. Biswas, S. Liu, X. Zhang, T.C. Chai, “Effects of detailed substrate modeling and solder layout design on the 1^st and 2^nd level solder joint reliability for the large die FCBGA”, IEEE International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1-7, 2008.
[33] H.U. Akay, Y. Liu, M.Tassaian, “Simplification of Finite Element Models for Thermal Fatigue Life Prediction of PBGA Packages”, ASME Journal of Electronic Packaging, Vol.125, pp.347-353, 2003.
[34] J.H. Lau, S.H. Pan, “Creep Behaviors of Flip Chip on Board With 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints”, Journal of Microcircuits and Electronic Packaging, Vol.24, No.1, pp.11-18, 2001.
[35] J.H. Lau, X. Zhang, S.K.W. Seah, K. Vaidyanathan, T.C. Chai, “Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and their Flip-Chip Microbumps”, IEEE Electronic Components and Technology Conference, pp.1073-1081, 2008.
[36] M. Pei and J. Qu, “Constitutive Modeling of Lead-Free Solders” , IEEE Advanced Packaging Materials: Processes, Properties and Interfaces, pp.45-49, 2005.
[37] L. Zhang, S. Xue, L. Gao, G. Zeng, Z. Sheng, Y. Chen, S. Yu, “Determination of Anand parameters for SnAgCuCe solder”, Modelling And Simulation In Materials Science And Engineering, Vol.17, 2009.