簡易檢索 / 詳目顯示

研究生: 王英全
Wang, Ying-Chuan
論文名稱: 非線性撓性平面機構的動態分析與實驗
Dynamic Analysis and Experiment of a Planar Mechanism with Nonlinear Compliance
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 165
中文關鍵詞: 平面雙穩撓性機構挫曲樑混沌響應振動能量回收器
外文關鍵詞: bi-stable planar mechanism, buckled beam, chaotic response, vibrational energy harvester
相關次數: 點閱:89下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要研究由單一撓性桿件使機構具有雙穩態且非線性彈簧的特性,在力矩輸入下的非線性動態特性。設計與製造出一平面機構,利用鋁片挫曲後非線性撓性使機構產生雙穩態,在外部電磁鐵產生的力矩驅動下,量測機構角度狀態,觀察到平面雙穩態撓性機構豐富非線性響應表現,如共振跳躍、單與雙位能井的混沌響應,也透過希爾伯特黃轉換(HHT)分析工具,處理非線性非穩態訊號,以便同時得到時間、頻率、振幅的資訊,HHT在非線性動態特性的分析上非常有幫助。將非線性系統以穩定點局部線性化來視之,則可透過自然振盪響應與頻率響應進行系統參數鑑定,並進行數值模擬與實驗數據比較,以驗證系統方程式模型正確性。由於系統的彈性恢復力矩為遲滯模型,無法用單一函數表示之,故將其模型近似為標準達芬振子,並使用諧波平衡法(harmonic balance)作頻率、振幅與功率分析,此外,配合Melnikov Criterion以分析實驗所得參數空間中,混沌響應不可能產生之區域;對於此平面雙穩撓性機構的動態特性研究,能應用於振動能量回收,利用直流馬達當作發電機,觀察不同驅動頻率與大小的弦波激擾力矩下,對應的動態響應與發電功率的關聯性。

    In this thesis, the nonlinear dynamic characteristics of a bi-stable buckled planar mechanism actuated by a moment input was investigated. After designing and manufacturing the bi-stable mechanism, the angle state of actuating rod was measured under the external torque input via the two electromagnets. Rich dynamic behaviors such as chaotic response in single and double potential energy well were observed. This paper also applies Hilbert-Huang Transform (HHT) analysis tools to process nonlinear non-stationary signals and obtain the time, frequency, amplitude information of the original signal in the same time, and try to explain how chaos appears. In order to acquire the values of system parameters, such as moment of inertia and damping coefficient, approximating a nonlinear system by a linear one around the stable equilibrium points in time-domain and frequency- domain was done. After doing the system identification and estimation, the comparison between the numerical simulations and experiment data can be made to check the validity of the system model. In addition, the restoring torque of the system is similar to the hysteresis model and unable to be expressed as the single and explicit form so the one was approximated to the standard Duffing oscillator. Therefore, Harmonic balance method can be applied to analytically predict the influence of parameter variations on the intrawell and interwell oscillations. For a twin-well Duffing oscillator, Melnikov criteria which can predict the possible chaos region in parameter space was applied in this paper. Finally, a bi-stable, torque actuated, vibrational energy harvester (VEH) was made to investigate the relationship between dynamic behavior and the voltage output of the VEH in different frequency and amplitude of the excitation torque.

    摘要 I Extend Abstract II 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號表 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 2 1-3.1 全撓性機構 (fully compliant mechanism) 2 1-3.2 部分撓性機構 (Partial compliant mechanism) 4 1-3.3 雙穩態撓性機構 (bi-stable compliant mechanism) 6 1-3.4 雙穩態撓性機構應用於振動能量回收 7 1-4 研究目標與方法 11 1-5 本文架構 11 第二章 非線性系統與混沌基礎理論 12 2-1 前言 12 2-2 典型的混沌模型 13 2-2.1 離散混沌模型 13 2-2.2 連續混沌模型 14 2-3 非線性動力學系統 17 2-3.1 動力學系統基本概念 17 2-3.2 非線性方程式解的五種形式 18 2-3.3 非線性系統的五種特性 20 2-4 混沌的主要特徵與測定 23 2-4.1 混沌定義 23 2-4.2 混沌的主要特徵 23 2-4.3 李亞普諾夫指數(Lyapunov exponent) 24 2-4.4 資訊熵(Information Entropy) 26 2-4.5 吸引子(attractor) 26 2-4.6 吸引子的維數 27 2-5 分岔理論 28 2-6 典型的混沌研究方法 29 2-6.1 直接觀測法 29 2-6.2 頻閃採樣法 29 2-6.3 Poincare法 29 2-6.4 相空間重構法 30 2-6.5 功率普密度分析法 30 2-7 Melnikov Criterion 30 2-8 本章總結 32 第三章 系統設計安裝與數據分析 33 3-1 系統設計 33 3-1.1 設計目標 33 3-1.2 系統方塊圖 38 3-2 實驗軟硬體設置 40 3-2.1 機構 40 3-2.2 電路 47 3-2.3 感測器 52 3-2.4 驅動器 57 3-2.5 LabVIEW人機介面 58 3-3 非穩態非線性數據分析 59 3-3.1 HHT 59 3-3.2 相軌跡重建 64 3-3.3 實驗數據分析 66 3-4 本章結論 76 第四章 系統鑑定與模擬分析 77 4-1 機構模型 77 4-2 系統參數鑑別 80 4-2.1 曲線擬合 80 4-2.2 彈性項函數 81 4-2.3 自然振盪分析 88 4-2.4 外在激擾 93 4-2.5 頻率響應分析 95 4-2.6 系統參數 100 4-3 數值模擬 101 4-3.1 自然響應 101 4-3.2 步階響應 103 4-3.3 弦波激擾 106 4-3.4 混沌響應 110 4-4 參數空間 113 4-4.1 固定頻率 5Hz 113 4-4.2 固定振幅 5V 122 4-4.3 參數空間 138 4-5 本章總結 142 第五章 振動能量回收器之應用 143 5-1 前言 143 5-2 振動能量回收器 143 5-3 諧波平衡法 146 5-3.1 一階近似解 (A first-order approximate solution) 147 5-4 實驗結果與分析 149 5-5 本章總結 160 第六章 結論與未來展望 161 6-1 結論 161 6-2 未來展望 162 參考文獻 163

    [1]L. L. Howell, ‘‘Compliant mechanisms,’’ Wiley-Interscience, 2001.
    [2]S. Kota, ‘‘Shape control of adaptive structures using compliant mechanisms,’’ Final technical rept, 1999.
    [3]張仁宗, 曹祖英, 程永華, 沈振華, 程世偉, ‘‘準分子雷射製造微型撓性機械之研究,’’中國機械工程學會第十一屆全國自動化科技研討會論文集, pp.111-118, 中華民國八十三年.
    [4]R. J. Chang and Y. L. Wang, ‘‘Integration method for input-output modeling and error analysis of four-bar polymer compliant micromachines,’’ ASME, Vol. 121, pp. 220-228, 1999.
    [5]蘇竣雄, ‘‘微細物件遙控與自動控制組裝系統之發展,’’ 國立成功大學機械工程所碩士論文, 2003.
    [6]G. G. Lowen and W. G. Jandrasits, ‘‘Survey of investigations into the dynamic behavior of mechanisms containing links with distributed mass and elasticity,’’ Mechanism and Machine Theory, Vol. 7, No. 1, pp. 3-17, 1972.
    [7]G. N. Sandor and A. G. Erdman, ‘‘Advanced mechanism design: analysis and synthesis,’’ Englewood Cliffs, NJ: Prentice-Hall, 1984.
    [8]S. S. Baek, ‘‘Autonomous ornithopter flight with sensor-based behavior,’’ Technical Report UCB/EECS-2011-65, 2011.
    [9]M. S. Baker and S. M. Lyon, and Howell, L. L., "A linear displacement bistable micromechanism," Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1-7, 2000.
    [10]S. G. Burrow and L. R. Clare, ‘‘A resonant generator with non-linear compliance for energy harvesting in high vibrational environments,’’ IEEE International Electric Machines & Drives Conference, Vol. 1, pp. 715-720, 2007.
    [11]A. Erturk and D. J. Inman, ‘‘Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling,’’ Journal of Sound and Vibration, Vol. 330, pp. 2339–2353, 2011.

    [12]R. L. Harne and K. W. Wang, ‘‘Review of the recent research on vibration energy harvesting via bistable systems,’’ Smart material and structure, Vol. 23, 2013.
    [13]F. Cottone, P. Basset, H. Vocca, L. Gammaitoni and T. Bourouina, ‘‘Bistable electromagnetic generator based on buckled beams for vibration energy harvesting,’’ Journal of Intelligent Material Systems, Vol. 0, pp.1-12, 2013.
    [14]J. Qiu and J. H. Lang, ‘‘A curved-beam bistable mechanism,’’ journal of microelectromechanical systems, Vol. 13, No. 2, 2004.
    [15]S. C. Stanton, B. A. M. Owens, and B. P. Mann, ‘‘Harmonic balance analysis of the bistable piezoelectric inertial generator.’’ Journal of Sound and Vibration, Vol. 331, No. 15, pp. 3617-3627, 2012.
    [16]R. L. Harne and K. W. Wang, ‘‘On the fundamental and super-harmonic effects in bistable energy harvesting,’’ Journal of Intelligent Material Systems and Structures, Vol. 0, pp. 1-14, 2013.
    [17]J. Casals-Terre and A. Shkel, ‘‘Dynamic analysis of a snap-action micromechanism,’’ Proceedings of IEEE Sensors, Vol. 3, pp.1245-1248, 2004.
    [18]M. Vangbo, ‘‘An analytical analysis of a compressed bistable buckled beam,’’ Sensors and Actuators, Vol. 69, pp. 212-216, 1998.
    [19]A. H. Nayfeh, W. Kreider, and T. J. Anderson, ‘‘Investigation of Natural Frequencies and Mode Shapes of Buckled Beams,’’ AIAA Journal, Vol. 33, No. 6, June 1995.
    [20]S. A. Emam and A. H. Nayfeh, ‘‘On the Nonlinear Dynamics of a Buckled Beam Subjected to a Primary-Resonance Excitation,’’ Nonlinear Dynamics, Vol. 35, No. 1, pp. 1-17, Jan 2004.
    [21]J. C. Ji and C. H. Hansen ‘‘Non-Linear Response of a Post-Buckled Beam Subjected to a Harmonic Axial Excitation,’’ Journal of Sound and Vibration, Vol. 237, No. 2, pp. 303-318, Oct 2000.
    [22]D. A. Porter and T. A. Berfield, ‘‘Bi-stable buckled energy harvesters actuated via torque arms,’’ Smart Materials and Structures, Vol. 23, 2014.
    [23]J. Guckenheimer and P. J. Holmes, ‘‘Nonlinear oscillations, dynamics system, and bifurcations of vector fields,’’ Springer-Verlag, 1983.
    [24]A. H. Nayfeh and D. T. Mook, ‘‘Nonlinear oscillator,’’ John Wiley & Sons Co, 1979.
    [25]F. C. Moon, ‘‘Experiments on chotic motion of a forced nonlinear oscillator – strange attractor,’’
    [26]F. C. Moon, ‘‘Chaotic vibration,’’ John Wiley & Sons Co, 1987.
    [27]M. A. Savi, ‘‘Chaos and order in biomedical rhythms,’’ J. Braz. Soc. Mech. Sci. & Eng, Vol. 27, No.2, 2005.
    [28]P. J. Holmes and J. E. Marsden, ‘‘Horseshoes in perturbations of hamiltonian systems with two degrees of freedom,’’ Comm. Math. Phys., Vol. 82, No. 4, pp. 523-544, 1981.
    [29]張仁宗,王英全, ‘‘Chaos實驗設計報告,’’ 國立成功大學光機電實驗室, 2016.
    [30]N. E. Huang, Z.Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, H. H. Liu, ‘‘The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis’’ Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences , Vol. 454, No. 1971, pp. 903-995, 1998.
    [31]B.L.J. Braaksma, H.W. Broer, F. Takens, and F. Takens, ‘‘On the numerical determination of the dimension of an attractor,’’ Dynamical Systems and Bifurcations, Vol. 1125, 1985.
    [32]R. L. Harne, M. Thota1, and K. W. Wang, ‘‘Concise and high-fidelity predictive criteria for maximizing performance and robustness of bistable energy harvesters,’’ Applied Physics Letters, No. 102, 2013.
    [33]R. L. Harne and K. W. Wang, ‘‘Axial suspension compliance and compression for enhancing performance of a nonlinear vibration energy harvesting beam system,’’ Journal of Vibration and Acoustics, Vol. 138, pp. 1-10, 2016.
    [34]M. Taher and A. Saif, ‘‘On a tunable bistable MEMS theory and experiment,’’ Journal of microelectromechanical systems, Vol. 9, No. 2, 2000.

    下載圖示 校內:2018-08-09公開
    校外:2018-08-09公開
    QR CODE