| 研究生: |
林正雄 Lin, Jeng-Shung |
|---|---|
| 論文名稱: |
使用氮化鋁及氮化硼填充以提升環氧樹脂熱傳導性之研究 Enhancement of Thermal Conductivity of Epoxy Resin by Filling with Aluminum Nitride and Boron Nitride Powders |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 184 |
| 中文關鍵詞: | 環氧樹脂複合材料 、燃燒合成法 、六方晶系氮化硼 、氮化鋁 、熱傳導值 |
| 外文關鍵詞: | Epoxy resin composites, Self-propagating high temperature synthesis (SHS), Hexagonal boron nitride (h-BN), Aluminum nitride (AlN), Thermal conductivity |
| 相關次數: | 點閱:180 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主要探討使用本實驗室自行合成之氮化鋁(AlN)與六方晶氮化硼(h-BN)粉體為填充料(filler),以提升環氧樹脂(epoxy)之熱傳導值,期望有助於高導熱封裝材料(環氧成型模料,Epoxy molding compound, EMC)之開發。在AlN/epoxy複合材料的研究顯示:表面改質確實可以改善AlN與高分子之親和性進而提升熱傳導(5.6-33.3%),而在各因素對AlN/epoxy複合材料熱傳導值之影響中發現;以AlN粉體添加量對AlN/epoxy複合材料之熱傳導值影響最為顯著(1567%),而其他因素(AlN粒徑大小、氧含量、有無經表面改質)之影響也會隨著粉體添加量提升而有越顯著現象,其中又以AlN粉體粒徑為另一影響AlN/epoxy複合材料熱傳導值重要因素,當AlN粉體添加量在60 vol%下,粉體顆粒大小影響為106%,而氧含量及有無經表面改質則僅約35%。在h-BN/epoxy複合材料的研究顯示:表面改質亦可改善h-BN與高分子之親和性並提升熱傳導值(7.7-35.4%);使用越大粒徑之h-BN粉體所製備出的h-BN/epoxy複合材料熱傳導值越高,但其複合材料之熱傳導值會隨著體積添加量提升至某一最大值然後開始下降(因在較高粉體體積添加量下h-BN/epoxy複合材料有較高之孔隙度且h-BN在複合材料呈較水平方向排列)。再比較相似粒徑之AlN及h-BN粉體製備成epoxy複合材料之熱傳導值結果則顯示:在較低粉體添加量下使用h-BN粉體所製備出的h-BN/epoxy複合材料有較高之熱傳導值,高粉體添加量下則以AlN粉體所製備出的AlN/epoxy複合材料有較高之熱傳導值。而使用本實驗室自行生產AlN或h-BN粉體所製備之epoxy複合材料熱傳導值約比市面上慣用之SiO2高235-435%,此外不同顆粒大小AlN或AlN與h-BN相互摻混可進而提升複合材料之熱傳導值約25-60%。
The thermal conductivity of epoxy resin composites filled with combustion synthesized aluminum nitride (AlN) particles and hexagonal boron nitride (h-BN) powders were fabricated and their thermal conductivities were compared.
Surface treatment of the combustion synthesized AlN powders was found to increase the thermal conductivity of the epoxy (CNE) resin composites by 5.6-33.3%. Within the ranges of the factors investigated in this study, it was found that the filler content has the greatest effect on the thermal conductivity of the composites: The maximum increase of the thermal conductivity can reach 1567% due to increase of the filler content from 10 to 60 vol%. The effects of the other three factors (particle size, oxygen content and with or without surface treatment) on the thermal conductivity of the composites increase roughly with increasing filler content. Among the three factors, particle size has the greatest effect on the thermal conductivity of the composites. At a filler content of 60 vol%, the maximum percentage increase of thermal conductivity reaches 106% due to particle size but only 30-35% due to oxygen content or surface treatment. The surface treatment of the h-BN particles was found to increase the thermal conductivity of the composites by 7.7–35.4%. The thermal conductivity of the composites was found to be higher when larger h-BN particles were used. The thermal conductivity was found to increase with increasing filler content to a maximum and then begin to decrease with further increases in this content. In addition to the effect of higher void at higher filler contents, more horizontally oriented h-BN particles formed at higher filler loadings (perhaps due to pressing during formation of the composites) were suggested to be a factor causing this decrease of the thermal conductivity. When comparing composites filled with similar size of AlN and h-BN particles, the h-BN-filled composites possess higher thermal conductivities than the AlN-filled composites do in the low filler content regions but the opposite was observed in the high filler content regions. The thermal conductivity of composites filled with combustion synthesized AlN or h-BN powders was found to be higher than that of commercialized SiO2 by 235-435% (i.e., 1.6, 3.8 and 6.92 W/m*K for filling with SiO2, AlN and h-BN, respectively). Besides, composites filled with bimodal particle size distribution of fillers or different types of fillers (AlN and h-BN) with different shapes can further increased the thermal conductivity of the composites by 25-60%.
1. S.Y. Wu, Y. L. Huang, C. C. M. Ma, S. M. Yuen, C. C. Teng and S. Y. Yang, “Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites,” Comps Part A, 42(11), 1573-83, 2011.
2. P. A. Hochstein, inventor; “LIGHTING FIXTURE,” U.S. Patent, 5857765, 1999.
3. P. Gatenholm and A. Mathiasson, “Biodegradable natural composites. II. Synergistic effects of processing cellulose with PHB,” J Appl Polym Sci, 51(7), 1231-7, 1994.
4. S. V. Levchik and E. D. Weil, “Thermal decomposition, combustion and flame-retardancy of epoxy resins-a review of the recent literature,” Polym Int, 53(12), 1901-29, 2004.
5. K. W. Garrett and H. M. Rosenberg, “The thermal conductivity of epoxy resin/powder composite materials,” J Phys D Appl Phys, 7(9), 1247-58, 1974 .
6. G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande, “The intrinsic thermal conductivity of AlN,” J Phys Chem Solids, 48(7), 641–7, 1987.
7. Z. Wang, T. Iizuka, M. Kozako, Y. Ohki and T. Tanaka, “Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength. Part I—sample preparations and thermal conductivity,” IEEE Trans Dielectr ElectrInsul, 18(6), 1963-72, 2011.
8. Y. S. Xu and D. D. L, “Chung. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments,” Compos Interface, 7(4), 243-56, 2000.
9. J. Gu, Q. Zhang, J. Dang and C. Xie, “Thermal conductivity epoxy resin composites filled with boron nitride,” Polym Adv Technol, 23(6), 1025-8, 2012.
10. W. S. Lee and J. Yu, “Comparative study of thermally conductive fillers in underfill for the electronic components,” Diam Relat Mater, 14(10), 1647-53, 2005.
11. X. Y. Huang, T. Iizuka, P. K. Jiang, Y. Ohki and T. Tanaka, “Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites,” J Phys Chem C, 116(25), 13629–13639, 2012.
12. G. Droval, J. F. Feller, P. Salagnac and P. Glouannec, “Thermal conductivity enhancement of electrically insulating syndiotactic- poly(styrene) matrix for diphasic conductive polymer composites,” Polym Adv Technol, 17(9-10), 732-45, 2006.
13. B. L. Zhu, J. Ma, J. Wu, K. C. Yung and C. S. Xie, “Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles,” J Appl Polym Sci, 118(5), 2754-64, 2010.
14. C. N. Lin and S. L. Chung, “Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II),” J Mater Res, 19(10), 3037-45, 2004.
15. S. L. Chung and Y. H. Hsu, “Combustion synthesis of boron nitride via magnesium reduction using additives,” Ceram Int, 41(1), 1457-65, 2015.
16. S. L. Chung and J. S. Lin, “Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles,” Molecules, 21(5), 670-80, 2016.
17. W. H. Kim and J. W. Bae, “Thermally conductive EMC (Epoxy Molding Compound) for microelectronic encapsulation,” Polym Eng Sci, 39(4), 756-66, 1999.
18. W. Y. Peng, X. Y. Huang, J. H. Yu, P. K. Jiang and W. H. Liu, “Electrical and thermophysical properties of epoxy/aluminum nitride nano- composites: Effects of nanoparticle surface modification,” Compos Part A, 41(9), 1201-9, 2010.
19. X. F. Lei, M. T. Qiao, L. D. Tian, Y. H. Chen and Q. Y. Zhang, “Evolution of surface chemistry and morphology of hyperbranched polysiloxane polyimides in simulated atomic oxygen environment,” Corros Sci, 98, 560-72, 2015.
20. X. F. Lei, Y. H. Chen, M. T. Qiao, L. D. Tian and Q. Y. Zhang, “Hyperbranched polysiloxane (HBPSi)-based polyimide films with ultralow dielectric permittivity, desirable mechanical and thermal properties,” J Mater Chem C, 4, 2134-46, 2016.
21. X. F. Lei, Y. Chen, H. P. Zhang, X. J. Li, P. Yao and Q. Y. Zhang, “Space Survivable Polyimides with Excellent Optical Transparency and Self-Healing Properties Derived from Hyperbranched Polysiloxane,” ACS Appl Mater Interfaces, 5(20), 10207-20, 2013.
22. X. F. Lei, M. T. Qiao, L. D. Tian, Y. H. Chen and Q. Y. Zhang, “Tunable Permittivity in High-Performance Hyperbranched Polyimide Films by Adjusting Backbone Rigidity,” J Phys Chem C, 120(5), 2548-61, 2016.
23. S. Li, S. Qi, N. Liu and P. Cao, “Study on thermal conductive BN/novolac resin composites,” Thermochim Acta, 523(1-2), 111–5, 2011.
24. 台灣半導體產業協會(TSIA)委託工研院產經中心(IEK)調查結果, 2014至2020年為預估值.
25. 產業價值鏈資訊平台網.
26. R. Rojas, “Gordon Moore and His Law: Numerical Methods to the Rescue,” Doc Math, extra volume: Optimization stories 401–415, 2012.
27. 林益生、許蓁容、何宗漢、伍玉真、鄧希哲. 環氧成型模料對構裝後晶片可靠度的影響. 工程科技與教育學刊第7卷第4期, 第532-545頁2010年10月.
28. 林光隆. 多元的半導體封裝材料. 科學發展專題報導. 第486期, 第30-33頁, 2013年6月.
29. H. Lee and K. Neville, “Handbook of Epoxy Resins,” McGraw Hill: New York, NY, USA. p. 14-24, 1982.
30. Jr. W. D. Callister, “Materials Science and Engineering – An Introduction,” John Wiley & Sons, INC. 2003.
31. M. W. Daniel, J. Sefcik, L. F. Francis and A. V. McCormick, “Reactions of a trifunctional silane coupling agent in the presence of colloidal silica sols in polar media,” J Colloid Interf Sci, 219(2), 351-6, 1999.
32. M. W. Daniels and L. F. Francis, “Silane adsorption behavior, microstructure, and properties of glycidoxypropyltrimethoxysilane- modified colloidal silica coatings,” J Colloid Interf Sci, 205(1), 191-200, 1998.
33. R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Polym Eng Sci, 1(3), 187-91, 1962.
34. R. C. Progelhof, J. L. Throne and R. R. Ruetsch, “Methods for predicting the thermal conductivity of composite systems: A review,” Polym Eng Sci, 16(9), 615-25, 1976.
35. K. Wattanakul, H. Manuspiya and N. Yanumet, “Thermal conductivity and mechanical properties of BN-filled epoxy composite: effects of filler content, mixing conditions, and BN agglomerate size,” J Compos Mater, 45(19), 1967-80, 2011.
36. J. X. Zhang, H. Cheng, Y. Z. Chen, A. Uddin, Shu Yuan, S.J. Geng and S. Zhang, “Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering” Surf Coat Technol, 198, 68 -73, 2005.
37. F. J. M. Haussonne,“Review of the synthesis methods for AlN,” Mater Manuf Processes, 10(4), 717-55, 1995.
38. G. Selvaduray and L. Sheet, “Aluminium nitride: review of synthesis methods,” Mater Sci Technol, 9(6), 463-73, 1993.
39. J. Subrahmanyam and M. Vijayakumar, “Self-propagating high -temperature synthesis,” J Mater Sci, 27(23), 6249-73, 1997.
40. C. N. Lin and S. L. Chung, “Combustion synthesis of aluminum nitride powder using additives,” J Mater Res, 16(8), 2200-8, 2001.
41. C. N. Lin and S. L. Chung, “Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers,” J Mater Res, 16(12), 3518-25, 2001.
42. G. Long and L. M. Foster, “Aluminum nitride, a refractory for aluminum to 2000℃,” J Am Ceram Soc, 42, 53-9, 1959.
43. P. Bowen, J. G. Highfield, A. Mocellin and T. A. Ring, “Degradation of aluminum nitride powder in an aqueous environment,” J Am Ceram Soc, 73(3), 724-7, 1990.
44. S. Fukumoto, T. Hookabe and H. Tsubakino, “Hydrolysis behavior ofaluminum nitride in various solutions,” J Mater Sci, 35(11), 2743-8, 2000.
45. K. Krnel and T. Kosmac, “Aqueous Processing of AlN Powder,” Mater Sci Forum, 554, 189-96, 2007.
46. 謝承佑. 氮化鋁粉體水解性質探討與抗濕技術開發. 國立成功大學化學工程系碩士論文, 2002.
47. 徐煜翔. 燃燒法合成氮化硼之製程開發. 國立成功大學化學工程系博士論文, 2014.
48. L. Laversenne, Š. Miljanić, P. Miele, C. Goutaudier and B. Bonnetot, “High surface and high nanoporosity boron nitride adapted to hydrogen sequestration,” Mater Sci Forum, 555, 355-62, 2007.
49. X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg and Y. Bando, “Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties,” Nanoscale Res Lett, 7(1), 662-8, 2012.
50. L. Wang, L. Shen, X. Xu, L. Xu and Y. Qian, “Facile synthesis of uniform h-BN nanocrystals and their application as a catalyst support towards the selective oxidation of benzyl alcohol,” RSC Adv, 2(28), 10689-93, 2012.
51. C. C. Hwang and S. L. Chung, “Combustion synthesis of boron nitride powder,” J Mater Res, 13(03), 680-6, 1998.
52. C. Y. Hsieh and S. L. Chung, “High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder,” J Appl Polym Sci, 102(5), 4734-40, 2006.
53. A. J. Ma, W. X. Chen, Y. G. Hou and G. Zhang, “The preparation and cure kinetics researches of thermal conductivity epoxy/AlN composites,” Polymer Plast Tech Eng, 49(4), 354-8, 2010.
54. Y. Nagai and G. C. Lai, “Thermal conductivity of epoxy resin filled with particulate aluminum nitride powder,” J Ceram Soc Jpn, 105(3), 197-200, 1997.
55. J. W. Bae, W. Kim and S. H. Cho, “The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution,” J Mater Sci, 35(23), 5907-13, 2000.
56. G. A. Slack, L. J. Schowalter, D. Morelli and Jr. J. A. Freitas, “Some effects of oxygen impurities on AlN and GaN,” J Cryst Growth, 246(3-4), 287-98, 2002.
57. J. Zhang, H. Q. Fan, S. M. Ke, Y. Z. Shi, X. H. Zeng, M. T. Bi and H. T. Huang, “Dielectric properties of AlN/polymer composites for electronic substrate application,” Key Eng Mater, 334, 1053-6, 2007.
58. E. S. Lee and S. M. Lee, “Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin,” J Am Ceram Soc, 91(4), 1169-74, 2008.
59. Y. S. Xu, D. D. L. Chung and C. Mroz, “Thermally conducting aluminum nitride polymer-matrix composites,” Compos Part A, 32(12), 1749-57, 2001.
60. K. Kim and K. Kim, “Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method,” Ceram Int, 40(4), 5181-9, 2014.
61. K. Wattanakul, H. Manuspiya and N. Yanumet, “Effective surface treatments for enhancing the thermal conductivity of BN-filled epoxy composite,” J Appl Polym Sci, 119(6), 3234-43, 2011.
62. H. Wang, P. Chen, J. Sun, X. Kuang and Z. Yao, “Study on high thermal conductive BN/epoxy resin composites,” Appl Mech Mater, 105, 1751-4, 2012.
63. Z. Han, J. W. Wood, H. Herman, C. Zhang and G. C. Stevens, “Thermal properties of composites filled with different fillers,” IEEE International symposium on electrical insulation, p.497-501, June 9-12, 2008.
64. J. P. Hong, S. W. Yoon, T. Hwang, J. S. Oh, S. C. Hong, Y. Lee and J. D. Nam, “High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers,” Thermochim Acta, 537, 70-5, 2012.
65. A. Agrawal and A. Satapathy, “Epoxy composites filled with micro-size AlN particles for microelectric applications,” Particul Sci Technol, 33(1), 2-7, 2014.
66. A. Agrawal and A. Satapathy, “Effect of Al2O3 addition on thermo-electrical properties of polymer composites-An experimental investigation,” Polym Compos, 36(1), 102, 2015.
67. J. P. Li, S. H. Qi and F. Xie, “Insulating and thermally conductive composite filled with boron nitride particles,” Adv Mater Res, 391, 282–6, 2012.
68. Y. Gao, A. Gu, Y. Jiao, Y. Yang, G. Liang, J. Hu, W. Yao and L. Yuan, “High-performance hexagonal boron nitride/ bismaleimide composites with high thermal conductivity, low coefficient of thermal expansion, and low dielectric loss,” Polym Adv Technol, 23(5), 919–8, 2012.
69. W. Zhou, S. Qi, H. Li and S. Shao, “Study on insulating thermal conductive BN/HDPE composites,” Thermochim Acta, 452(1), 36–42, 2007.
70. R. Jones, “Mechanics of Composite Materials,” McGraw-Hill Book Co.: New York, NY, USA, 1975.
71. R. F. Hill and P. H. Supancic, “Thermal conductivity of platelet-filled polymer composites,” J Am Ceram Soc, 85(4), 851–7, 2002.
72. C. E. Corcione, F. Freuli and A. Maffezzoli, “The aspect ratio of epoxy matrix nanocomposites reinforced with graphene stacks,” Polym Eng Sci, 53(3), 531–9, 2013.
校內:2022-08-11公開