| 研究生: |
許偉澤 Syu, Wei-Ze |
|---|---|
| 論文名稱: |
鈀基膜管之氫氣滲透及極化現象數值研究 Numerical study on hydrogen permeation and polarization in Pd-based membrane tubes for hydrogen separation |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 氫氣 、鈀 、濃度極化 、穩態混流反應器及柱塞流反應器 、流動型態 、掃氣 、濃度極化因子 、反正切函數 |
| 外文關鍵詞: | Hydrogen (H2), Palladium (Pd), Concentration polarization, CSTR and PFR, Flow pattern, Sweep gas, Concentration polarization index (CPI), Arc tangential function |
| 相關次數: | 點閱:96 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以模擬方式,進行氫氣穿越鈀基膜管之濃度極化現象與分離氫氣效率研究與分析。藉由數值結果,了解極化現象對氫氣滲透的影響,並提供膜管最佳化操作參數,作為實驗之參考依據,本文主要分為兩大部分,如下所述。
第一部份首先依據實驗設備建立幾何模型,以四種操作參數分別為壓差、氫含量、雷諾數及滲透係數,探討參數對於極化現象之影響。模擬結果指出,在高操作壓差、高薄膜滲透係數、低氫含量及低混合氣流率等操作條件下,極化現象更趨嚴重;使得以穩態混流反應器(CSTR)概念之經驗式預測本柱塞流反應器(PFR)氫滲透通量失準,並指出以穩態混流反應器概念之席維斯定律預測氫滲透,僅於氫滲透率低於30%較為準確。
第二部分為在膜管中加入掃氣,研究流動型態及掃氣流率對於氫氣滲透現象與極化現象之影響。實驗結果指出,相較於同流向模式下,反流向模式可達到更高氫氣分離效率;且當混合氣進氣量低時,更是存在著達到完全氫氣回收之可能性。然而低混合氣及低掃氣進料會使薄膜表面極化現象更為嚴重,為找出在固定操作環境下之較佳氫氣分離效果,調整混合氣及掃氣進料流率以找出最佳化操作條件,並以一反正切函數描述之,作為實驗於固定混合氣進料下控制掃氣流率操作條件之參考依據。
The influence of concentration polarization and separation efficiency for hydrogen through palladium-based membrane was investigated by simulation. According the numerical results, how the concentration polarization affecting H2 permeation and finding out the optimized conditions to refer to experiment are mentioned in this study. There are two parts in this study.
In the first part of this research, a model base on the experimental equipment is constructed. Four important parameters which are the pressure difference, H2 molar fraction, Reynolds number, and membrane permeance affecting H2 permeation proceed a extensive survey. The predictions indicate that increasing pressure difference or membrane permeance facilitates H2 permeation rate; concentration polarization is thus triggered. Alternatively, when Reynolds number or H2 molar fraction decreases along with a higher permeance, the deviation of plug flow reactor (PFR) from continuous stirred tank reactor (CSTR) grows, even though H2 permeation rate declines. From the obtained results, it is concluded that the H2 permeation rate can be predicted by Sieverts’ law if the H2 permeation ratio is no larger than 30%.
In the second part of this research, the sweep gas is added into the membrane tube to seek the influences of flow pattern and sweep gas on hydrogen permeation and polarization. The predicted results suggest that the counter-current mode are able to give the better performance of hydrogen separation compared to the co-current mode, and complete hydrogen recovery can be achieved if the flow rate of feed gas is low to a certain extent. However, lower flow rates of feed gas and sweep gas will trigger serious concentration polarization on the membrane surface. The transport of feed gas into the membrane tube from the lumen side or the shell side is flexible. The optimum Reynolds number of sweep gas in accordance with the Reynolds number of feed gas can be correlated by an arc tangential function which is able to provide a reference for the operation of hydrogen separation by controlling sweep gas.
1. Adhikari S, Fernando S. Hydrogen Membrane Separation Techniques. Industrial and Engineering Chemistry Research 2006;45:875-881.
2. Amphlett JC, Mann RF, Pepplely BA. On board hydrogen purification for steam reformatton/pem fuel cell vehicle power plants. International Journal of Hydrogen energy 1996;21:673-678.
3. Basile A, Tosti S, Capannelli G, Vitulli G, Iulianelli A, Gallucci F, Drioli E. Co-current and counter-current modes for methanol steam reforming membrane reactor: Experimental study. Catalysis Today 2006;118:237-45.
4. Bhattacharya S, Hwang ST. Concentration polarization, separation factor, and Peclet number in membrane processes. Journal of Membrane Science 1997;132:73-90.
5. Brunetti A, Caravella A, Barbieri G, Drioli E. Simulation study of water gas shift reaction in a membrane reactor. Journal of Membrane Science 2007;306:329-40.
6. Caravella A, Barbieri G, Drioli E. Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach. Chemical Engineering Science 2008;63:2149-60.
7. Catalano J, Baschetti MG, Sarti GC. Influence of the gas phase resistance on hydrogen flux through thin palladium-silver membranes. Journal of Membrane Science 2009;339:57-67.
8. Chen CH, Ma YH. The effect of H2S on the performance of Pd and Pd/Au composite membrane. Journal of Membrane Science 2010; 362: 535-544.
9. Chen WH, Chiu IH. Modeling of transient hydrogen permeation process across a palladium membrane. Applied Energy 2010;87:1023-32.
10. Chen WH, Hsu PC, Lin BJ. Hydrogen permeation dynamics across a palladium membrane in a varying pressure environment. International Journal of Hydrogen Energy 2010;35:5410-5418.
11. Chen WH, Lu JJ. Hydrogen generation and separation from water gas shift reactions in association with a palladium membrane tube. International Journal of Energy Research 2012;36:346-54.
12. Chen WH, Syu WZ, Hung CI. Numerical characterization on polarization of hydrogen permeation in a Pd-based membrane tube. International Journal of Hydrogen Energy 2011;36:14734-44.
13. Chen WH, Hsu PC. Hydrogen permeation measurements of Pd and Pd-Cu alloy membranes using dynamic pressure difference method. International Journal of Hydrogen Energy 2011;36:9355-66.
14. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, et al. Areview of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. Journal of Power Sources 2007;165:739-56.
15. Coroneo M, Montante G, Paglianti A. Numerical and experimental fluid-dynamic analysis to improve the mass transfer performances of Pd-Ag membrane modules for hydrogen purification. Industrial and Engineering Chemistry Research 2010;49:9300-9.
16. Criscuoli A, Basile A, Drioli E. An analysis of the performance of membrane reactors for the water-gas shift reaction using gas feed mixtures. Catalysis Today 2000;56:53-64.
17. Falco MD, Paola LD, Marrelli L. Heat transfer and hydrogen permeability in modelling industrial membrane reactors for methane steam reforming. International Journal of Hydrogen Energy 2007;32:2902-13.
18. Gallo M, Nenoff TM, Mitchell MC. Selectivities for binary ixtures of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by Grand Canonical Monte Carlo techniques. Fluid Phase Equilibria 2006;247:135-142.
19. Gallucci F, Basile A. Co-current and counter-current modes for methanol steam reforming membrane reactor. International Journal of Hydrogen Energy 2006;31:2243-9.
20. Gallucci F, Falco MD, Tosti S, Marrelli L, Basile A. Co-current and counter-current configurations for ethanol steam reforming in a dense Pd–Ag membrane reactor. International Journal of Hydrogen Energy 2008;33:6165-71.
21. Gallucci F, Sintannaland MV, Kuipers JAM. Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming. International Journal of Hydrogen Energy 2010;35:7142-50.
22. Gao H, Lin YS, Li Y, Zhang B, Chemical stability and its improvement of palladium-based metallic membranes. Industrial & Engineering Chemistry Research 2004;43:6920-30.
23. He G, Mi Y, Yue PL, Chen G. Theoretical study on concentration polarization in gas sepapration membrane process. Journal of Membrane Science 1999;153:243-58.
24. Hsu PC, Lin BJ, Chen WH. Hydrogen permeation dynamics across a palladium membrane in a varying pressure environment. The 5th National Conference on Hydrogen Energy and Fuel Cell, December, 2010.
25. Iulianelli A, Basile A. CO-free hydrogen production by steam reforming of acetic acid carried out in a Pd–Ag membrane reactor: The effect of co-current and counter-current mode. International Journal of Hydrogen Energy 2008;33:4091-6.
26. Iwuchukwu IJ, Sheth A. Mathematical modeling of high temperature and high-pressure dense membrane separation of hydrogen from gasification. Chemical Engineering and Processing 2008;47:1292-1304.
27. Kluiters SCA. Status review on membrane systems for hydrogen separation; Energy Center of The Netherlands: Petten, The Netherlands, 2004.
28. Koros WJ, Fleming GK. Membrane-based gas separation. Journal of Membrane Science 1993;83:1-80.
29. Lin SC, Hsu PC, Chen WH. Unsteady hydrogen permeation dynamics of Pd and Pd-Cu membranes. The 21st National Conference on Combustion Science and Technology, March, 2011.
30. Ludtke O, Behling R.D, Ohlrogge K. Concentration polarization in gas permeation. Journal of Membrane Science 1998;146:145-57.
31. Mallada R, Menéndez M. Inorganic Membranes:Synthesis, Characterization and Applications, Membrane science and technology series, Vol.13. Oxford: Elsevier; 2008.
32. Mourgues A, Sanchez J. Theoretical analysis of concentration polarization in membrane modules for gas separation with feed inside the hollow-fibers. Journal of Membrane Science 2005;252:133-44.
33. Pan XL, Xiong GX, Sheng SS, Stroh N, Brunner H. Thin dense membranes supported on a-Al2O3 hollow fibers. Chemical Communications 2001;24:2536-7.
34. Phair JW, Donelson R. Developments and design of novel (Non-palladium-based) metal membranes for hydrogen separation. Industrial & Engineering Chemistry Research 2006;45:5657-5674.
35. Rothenberger KS, Cugini AV, Howard BH, Killmeyer RP, Ciocco MV, Morreale BD, et al. High pressure hydrogen permeance of porous stainless steel coated with a thin palladium film via electroless plating. Journal of Membrane Science 2004;244:55-68.
36. Shi ZL, Wu SQ, Szpunar JA, Roshd M. An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. Journal of Membrane Science 2006;280:705-11.
37. Spillman RW. Economics of gas separation membranes. Chemical Engineering Progress 1989;85:41-62.
38. Tong JH, Su LL, Haraya K, Suda H. Thin Pd membrane on alpha-Al2O3 hollow fiber substrate without any interlayer by electroless plating combined with embedding Pd catalyst in polymer template. Journal of Membrane Science 2008;310:93-101.
39. Tosti S, Basile A, Borelli R, Borgognoni F, Castelli S, Fabbricino M, Gallucci F, Licusati C. Ethanol steam reforming kinetics of a Pd-Ag membrane reactor. International Journal of Hydrogen Energy 2009;34:4747-54.
40. Tournier G, Pijolat C. Selective filter for SnO2-based gas sensor: application to hydrogen trace detection. Sensors and Actuators B 2005;106:553-562.
41. Yang JY, Komaki M, Nishimura C. Effect of overlayer thickness on hydrogen permeation of Pd60Cu40/V-15Ni composite membranes.International Journal of Hydrogen Energy 2007;32:1820-4.
42. Zhang J, Liu D, He M, Xu H, Li W. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes. Journal of Membrane Science 2006;274:83-91.
43. 徐南平,邢衛紅,趙宜江,“無機膜分離技術與應用,”化學工業出版社,北京,2004年4月北京第2次印刷。
44. 黃鎮江,“燃料電池,”全華科技圖書股份有限公司, 2005年3月。
45. 曲新生,陳發林,“氫能技術,”五南圖書出版股份有限公司,2006年4月。
46. 朱秦億,“鈀及鈀銀複合膜之製備特性分析及其氫/氮選透性之研究,”國立成功大學化學工程系博士論文,2007年6月。
47. 吳榮華,“我國能源安全體系建置,”能源報導,2009年5月。
48. 市川 勝,“氫能技術,”世茂出版有限公司,2009年8月初版。
49. 許博智、林柏志、陳維新,“變壓過程中氫氣穿越鈀薄膜之動力行為”,中華民國燃燒學會第20屆學術研討會,崑山科技大學,2010。
50. 陳維新, “生質物與生質能,”高立圖書有限公司,2010年7月。
51. 陳維新,“能源概論,”高立圖書有限公司,2011年2月。
52. 陳維新, “空氣污染與控制,” 高立圖書有限公司,2012年2月。